THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Цель работы: получение наночастиц серебра путем восстановления цитрат-анионом и тетрагидридоборатом натрия.

Применяемое оборудование: магнитная мешалка, обладающая функцией электроплитки-Hei-Standart ,химические стаканы на 200 мл (2шт), химический стакан на 100 мл (1 шт), колба на 50 мл.

Задание: получить наночастицы серебра, освоить работу на спектрофотометре, определить коэффициент экстинции наночастиц серебра, рассчитать размеры полученных наночастиц.

Подготовка к выполнению работы: ознакомиться с порядком работы на спектрофотометре и магнитной мешалке.

Особенности строения наночастиц серебра и их оптические свойства

Интерес к получению наночастиц серебра вызван свойствами, присущими только этому материалу: наибольшей интенсивностью полосы поверхностного плазмонного резонанса (ППР), самым высоким коэффициентом экстинции, явлением гигантского комбинационного рассеяния света, особенностями люминисценции и оптических характеристик приповерхностного слоя вблизи наночастиц серебра. Все больший интерес приобретает изучение бактерицидных свойств коллоидных растворов (наночастиц) серебра.

Кристаллическая решетка серебра, как и других металлов, устроена таким образом, что валентные электроны способны перемещаться по всему объему вещества, чем обусловлена высокая электропроводность металлов. Переменное электрическое поле светового луча смещает электроны проводимости и на поверхности наночастицы образуется диполь, который колеблется с частотой поля падающего света. Этот колеблющийся вблизи поверхности наночастицы диполь называют поверхностным плазмоном. Возникновение поверхностного плазмона возможно, если величина наночастицы много меньше длины падающего света.



Совпадение частоты колебаний поверхностного плазмона и частоты колебаний падающего света вызывает резонансное поглощение и рассеяние света, которое называется поверхностным плазмонным резонансом (ППР).

Поглощение света веществом рассчитывается по закону Ламберта-Бера

lg(J 0 /J) = εCd (1)

где J 0 и J - интенсивности света до и после прохождения через слой толщины d (см) раствора вещества с концентрацией С (моль/л). Отношение J0/J называется погашением или экстинкцией, величина ε -молярным коэффициентом экстинкции.

Коэффициент экстинкции серебра наибольший в максимуме ППР по сравнению с частицами такого же размера из других материалов, то есть, наночастицы серебра пропускают свет в этой области спектра меньше любых других соразмерных частиц.

При взаимодействии света с нанопроволоками, наностержнями или контактирующими цепочками наносфер, когда длина частиц сравнима с длиной волны падающего света, диполь, образующийся на конце частицы, вызывает поляризацию прилегающих

участков и образование волны, бегущей от одного конца нанопроволоки или цепочки наносфер к другому. Точное попадание света, при помощи лазера, на один конец нанопроволоки вызывает образование на другом конце колеблющегося диполя, излучающего свет с длиной волны падающего света. Такое явление называется поверхностным плазмонным поляритоном. Это позволяет использовать нанопроволоки и цепочки наносфер в качестве волноводов оптических наноустройств.

Комбинационное рассеяние света, это рассеяние света исследуемым веществом, связанное со структурой его молекулы. Если снимать спектры комбинационного рассеяния (КР) веществ, адсорбированных на поверхности серебряных наночастиц, то усиление интенсивности полос в спектре в расчете на одну молекулу достигает 10 5 -10 6 раз, по сравнению со спектрами, снятыми без участия наночастиц серебра. Это явление получило название – гигантское комбинационное рассеяние света. При условии точной фокусировки падающего света, можно получить усиление комбинационного рассеяния света в 10 15 раз, что позволяет снять спектр одной или нескольких молекул. Если частота падающего электромагнитного излучения и частота колебаний поверхностного плазмона одинаковы и равны ω, то усиление интенсивности полосы комбинационного рассеяния пропорционально ω 4 .

Поверхностный плазмонный резонанс усиливает интенсивность спектров флуоресценции в 10 2 -10 4 раз при совпадении длины волны ППР и длины волны возбуждения флуоресценции. При этом наблюдается уменьшение времени затухания флуоресценции, так как при взаимодействии электронных слоев наночастиц серебра и адсорбированных молекул облегчается переход между основным и возбужденным состоянием флуоресцирующей молекулы и скорость затухания флуоресценции увеличивается.

Молекулы веществ, находящиеся у поверхности наночастиц серебра подвергаются действию падающего излучения и поверхностного плазмонного резонанса, что увеличивает возможность фотохимических реакций для этих веществ, фотолюминисценции, поглощения и рассеяния света.

Наночастицы серебра размерами до 10 нм способны не только адсорбироваться на клеточной мембране, но и проникать внутрь бактерии. Бактерицидное действие серебра связывают с образованием ионов серебра (Аġ+) при окислении металла. Особое значение имеет форма наночастиц. Считают, что грань в декаэдрах и икосаэдрах, из которых состоит до 98% наночастиц в интервале 1-10 нм, обладает высокой химической активностью и присутствие этой грани усиливает антибактериальное действие наночастиц.

Эксперимент 1. Цитратный метод получения наночастиц серебра

Цитратный метод получения наночастиц золота, разработанный Туркевичем, применим и к получению наночастиц серебра. Но, так как серебро более активный металл, чем золото (Е 0 Аg+/Ag =0,8 В, Е 0 Au +3 /Au = 1,5 В), то синтез наночастиц серебра происходит более сложно из-за способности серебра к быстрому окислению и агрегации. Для усиления устойчивости коллоидных растворов серебра наночастицы необходимо стабилизировать. В цитратном методе получения наночастиц серебра и восстановителем и стабилизатором служит цитрат-анион, получаемый при растворении в воде трехзамещенной натриевой соли лимонной кислоты. При нагревании раствора и окислении цитрат-аниона образуется ацетондикарбоновая и итаконовая кислоты.

Эти кислоты адсорбируются на поверхности частиц и контролируют их рост.

В настоящее время существуют два механизма, объясняющих образование и рост наночастиц серебра.

Где Ag x – кластеры серебра (< 1 нм), Ag m – первичные частицы, стабилизированные цитратом (~ 1 нм), Ag n – конечные частицы, R – восстановитель.

И по первому и по второму механизму сначала образуются кластеры серебра, которые затем взаимодействуют со стабилизатором – цитратом и конденсируются, образуя более крупные частицы. После достижения размера ~ 1нм конденсация кластеров больше не происходит и образование наночастиц по первому и второму пути начинает различаться. В первом случае концентрация стабилизатора оказывается достаточной и дальнейший рост частиц происходит за счет восстановления ионов серебра на поверхности наночастиц. При этом увеличение размеров частиц происходит медленнее, что приводит к образованию устойчивых коллоидных растворов наночастиц, в основном сферической формы.

Во втором случае концентрация стабилизатора (цитрата) оказывается недостаточной, чтобы предотвратить агрегацию кластеров. Это приводит к образованию наночастиц большого диаметра.

Большое влияние на размеры наночастиц оказывает соотношение концентраций ионов серебра и цитрат-аниона, а так же время кипячения раствора.

Ход работы

1. 25 мл 1х10 -3 моль/л приготовленного на дистиллированной воде AgNO 3 и нагреть в химическом стакане объемом в 200 мл на магнитной мешалке до кипения.

2. Приготовьте 100 мл 1х10-3 моль/л раствора Na 3 C 6 H 5 O 7 в другом стакане и, при непрерывном размешивании, по каплям добавляйте в кипящий раствор AgNO3.

3. Наблюдайте изменение цвета раствора от бесцветного к желтому, что свидетельствует о восстановлении ионов серебра.

4. Нагревание продолжайте 15 минут, а затем охладите раствор до комнатной температуры.

Эксперимент 2. Получение наночастиц серебра путем восстановления тетрагидридоборатом натрия

Применение тетрагидридобората натрия (NaBH4) при получении наночастиц серебра имеет большее распространение, чем использование для этих же целей цитрат-аниона. Это объясняется более высокой восстановительной способностью боргидрида и простотой применения. Как и в цитратном методе, тетрагидридоборат натрия служит одновременно восстановителем и стабилизатором образующихся наночастиц.

Исследование механизма роста наночастиц показало, что в случае применения боргидрида, главную роль играет агрегация образовавшихся кластеров. До этого считалось, что согласно модели Ла Мера-Дайнегера, основное число коллоидных частиц создается в течение короткого времени нуклеации, а дальнейший рост происходит за счет восстановления ионов серебра на поверхности частиц (как в цитратном методе). Проведенные исследования показали, что концентрация ионов серебра в растворе не меняется во все время роста наночастиц. Это доказывает, что рост частиц не может происходить за счет восстановления серебра на поверхности кластеров. Увеличение размера частиц происходит за счет агрегации кластеров при разложении боргидрида, когда стабилизирующее действие тетрагидридобората натрия уменьшается.

Ход работы

1. 5 мл 1х10 -3 моль/л приготовленного на дистиллированной воде AgNO 3 и перелить в колбу на 50 мл.

2. Отмерить в стаканчик 15 мл 2х10 -3 моль/л NaBH 4 и охладить до температуры 0С 0 , поставив в кристаллизатор со льдом.

3. Перелить охлажденный NaBH 4 в колбу с AgNO 3 и быстро смешать, энергично встряхивая, что помогает образованию монодисперсных частиц.

Образующийся раствор желтого цвета показывает единственный пик поглощения с длиной волны около 400нм. Как показала электронная трансмиссионная микроскопия, образующиеся наночастицы имеют сферическую форму, диаметром 1-50 нм, а для некоторых препаратов 1-10 нм. На сферическую форму наночастиц указывает желтая окраска раствора. Образующиеся частицы стабильны, не осаждаются и не меняют окраску в течение нескольких недель.

Обработка результатов

С помощью спектрофотометра определить коэффициент экстинкции и используя формулу

C ext =24 πRε 3/2 м /λε (1)

(где R - радиус наночастицы, εм-диэлектрическая проницаемость среды, ε - диэлектрическая проницаемость частиц, λ-длина волны падающего света, C ext - коэффициент экстинкции) оцените размер наночастицы.

Контрольные вопросы

1.Чем объясняется возникновение на поверхности наночастиц избыточной поверхностной энергии?

2.Какое явление называется поверхностным плазмонным резонансом?

3.Что называется молярным коэффициентом экстинции и как рассчитать его величину, используя закон Ламберта-Бера?

4.Какое явление называют гигантским комбинационным рассеянием света и где оно применяется?

5.Как возникает поверхностный плазмонный поляритон и где возможно его применение?

6.Какие физические и химические явления могут происходить с молекулами веществ, адсорбированных на поверхности наночастиц серебра под действием поверхностного плазмонного резонанса?

7.Чем объясняется повышенная бактерицидная активность наночастиц серебра?

8.По какому механизму происходит восстановление наночастиц серебра с помощью цитрат-аниона?

9.Какой процесс приводит к росту наночастиц серебра при восстановлении ионов серебра тетрагидридоборатом натрия?

10.Какие способы получения наночастиц серебра Вы еще знаете?

Список используемых источников

1. Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. Успехи химии, 2008, т.77, №3.

Лабораторная работа №4

Создание диэлектрических нанослоев на проводящей подложке и исследование их диэлектрических свойств

Цель работы:

Применяемое оборудование : Мешалка магнитная. Центрифуга. Установка для измерения электрических свойств. Бутилацетат. Пенополиуретан.

Задание: Изготовить конденсатор основанный нанослоев на проводящей подложке. Исследовать диэлектрические свойства.

Подготовка к выполнению работы :

Краткое теоретическое введение

Роль тонкопленочной технологии в производстве интегральных схем

Интегральная электроника развивается не как новая или обособленная область техники, а путем обобщения многих технологических приемов, ранее используемых в производстве дискретных полупроводниковых приборов и при изготовлении топкопленочпых покрытий.

В соответствии с этим в интегральной электронике определились два главных направления: полупроводниковое и тонкопленочное. Создание интегральной схемы на одной монокристаллической полупроводниковой (пока только кремниевой) пластине является естественным развитием отработанных в течение последних десятилетий технологических принципов создания полупроводниковых приборов, как известно, хорошо зарекомендовавших себя в эксплуатации.

Тонкопленочное направление интегральной электроники основано на последовательном наращивании пленок различных материалов на общем основании (подложке) с одновременным формированием из этих пленок микро деталей (резисторов, конденсаторов, контактных площадок и др.) и внутрисхемных соединений.

Сравнительно недавно полупроводниковые (твердые) и тонкопленочные гибридные ИС рассматривались как конкурирующие направления в развитии интегральной электроники. В последние годы стало очевидно, что эти два направления отнюдь не исключают, а скорее, наоборот, взаимно дополняют и обогащают друг друга. Более того, до сегодняшнего дня не созданы (да, видимо, в этом и нет необходимости) интегральные схемы, использующие какой-либо один вид технологии. Даже монолитные кремниевые схемы, изготавливаемые в основном по полупроводниковой технологии, одновременно применяют такие методы, как вакуумное осаждение пленок алюминия и других металлов для получения внутрисхемных соединений, т. е. методы, на которых основана тонкопленочная технология.

Большим достоинством тонкопленочной технологии является ее гибкость, выражающаяся в возможности выбора материалов с оптимальными параметрами и характеристиками и в получении по сути дела любой требуемой конфигурации и параметров пассивных элементов. При этом допуски, с которыми выдерживаются отдельные параметры элементов, могут быть доведены до 1-2%. Это достоинство особенно эффективно проявляется в тех случаях, когда точное значение номиналов и стабильность параметров пассивных компонентов имеют решающее значение (например, при изготовлении линейных схем, резистивных и резистивно-емкостных схем, некоторых видов фильтров, фазочувствительных и избирательных схем, генераторов и т. п.).

В связи с непрерывным развитием и совершенствованием как

полупроводниковой, так и тонкопленочной технологии, а также ввиду все большего усложнения ИС, что выражается в увеличении числа компонентов

и усложнении выполняемых ими функций, следует ожидать, что в ближайшем будущем будет происходить процесс интеграции технологических методов и приемов и большинство сложных ИС будут изготовляться на основе совмещенной технологии. При этом можно получить такие параметры и такую надежность ИС, которых нельзя достигнуть при использовании каждого вида технологии в отдельности. Например, при изготовлении полупроводниковой ИС все элементы (пассивные и активные) выполняются в одном технологическом процессе, поэтому параметры элементов оказываются взаимосвязанными. Определяющими являются активные элементы, так как обычно в качестве конденсатора используется переход база - коллектор транзистора, а в качестве резистора-диффузионная область, получающаяся при создании базы транзистора. Нельзя оптимизировать параметры одного элемента, не изменив одновременно характеристики других. При заданных характеристиках активных элементов изменять номиналы пассивных элементов можно лишь изменением их размеров.

При использовании совмещенной технологии активные элементы изготовляются чаще всего методами планарной технологии в пластине кремния, а пассивные годами тонкопленочной технологии на окисленной поэлементны (резисторы, а иногда и конденсаторы) - поверхности той же самой кремниевой пластины. Однако процессы изготовления активной и пассивной частей ИС разнесены по времени. Поэтому характеристики пассивных элементов в значительной мере независимы и определяются выбором материала, толщиной пленок и их геометрией. Поскольку транзисторы совмещенной ИС находятся внутри подложки, размеры такой схемы могут быть значительно уменьшены по сравнению с гибридными ИС, которые используют дискретные активные элементы, занимающие сравнительно много места на подложке.

Схемы, изготовленные по совмещенной технологии, имеют целый ряд несомненных достоинств. Так, например, при этом имеется возможность получения на малой площади резисторов с большой величиной и малым температурным коэффициентом сопротивления, имеющих очень узкую ширину и большое поверхностное сопротивление. Контроль скорости осаждения в процессе получения резисторов позволяет изготовить их с очень высокой точностью. Резисторам, полученным путем осаждения пленок, не свойственны токи утечки через подложку даже при высоких температурах, а сравнительно большая теплопроводность подложки препятствует возможности появления в схемах участков с повышенной температурой.

Тонкие пленки, помимо производства ИС по эпитаксиально-планарной технологии, широко используются в производстве гибридных ИС, а также при изготовлении новых видов микроэлектронных приборов (приборов с зарядовой связью, криотронных ЗУ на основе эффекта Джозефсона, ЗУ на цилиндрических магнитных доменах и др.).

Тонкопленочная металлизация полупроводниковых приборов и

интегральных схем

При изготовлении полупроводниковых приборов и ИС для получения омических контактов к кремнию, меж соединений и контактных площадок, а также электродов затвора МОП структур широкое распространение получили пленки алюминия, что обусловлено следующими достоинствами этого металла:

Низкой стоимостью Аl и возможностью использования для всех процессов металлизации одного металла, что значительно упрощает и удешевляет технологию и предотвращает возникновение гальванических эффектов;

Высокой электропроводностью пленок Аl, близкой к электропроводности объемного материала; легкостью испарения Аl в вакууме из вольфрамовых тиглей и электронно-лучевых испарителей;

Высокой адгезией А1 к кремнию и его окислам; низкоомностью контакта Аl с кремнием р- и n-типов проводимости;

Заметной растворимостью кремния в Аl с образованием твердого раствора, почти не уменьшающего электропроводности;

Отсутствием в системе Аl-Si химических соединений;

Химическим взаимодействием А1 с Si02, частично остающимся на

контактных площадках; химической стойкостью А1 в окислительной среде и

радиационной стойкостью;

Легкостью проведения фотолитографических операций для получения конфигурации проводящих дорожек с использованием травителей, не реагирующих с кремнием и двуокисью кремния; хорошей пластичностью Аl и устойчивостью к циклическим изменениям температуры.

Величина зерен осаждаемых пленок Аl существенно зависит от

скорости испарения и температуры подложек. Чем больше величина зерна чем более совершенна кристаллическая структура пленки, тем меньше ее удельное сопротивление, меньше сказывается эффект электромиграции и как следствие токоведущие дорожки, и омические контакты имеют больший срок службы. Ориентированный рост пленок Аl на не окисленных поверхностях кремния в плоскости (111) наблюдается при скоростях осаждения около 3 10-2 мкм с-1 и температуре подложки 200-250°С.

Для получения столь больших скоростей осаждения пленок чаще всего используются электронно-лучевые испарители. При этом степень совершенства кристаллической структуры пленок может неконтролируемо изменяться вследствие дополнительного радиационного нагрева подложек, величина которого зависит как от мощности испарителя, так и от материала подложки и толщины осаждаемой пленки.

Неконтролируемые изменения в структуре пленки возникают также из-за

наличия заряженных частиц в молекулярном пучке испаряемых паров Аl.

Концентрация заряженных частиц тем выше, чем больше ток эмиссии катода

и больше скорость испарения.

Ход работы

1. Включить питание лаборатории.

2. Приготовить раствор полиуретана.

2.1. В плотно закрывающуюся ёмкость налить 200 мл «Бутилацетата».

2.2. Покрошить «Пенополиуретан» до диаметра не превышающего диаметр горлышка ёмкости применяемой в пункте «3»

2.3. Измельчённый «Пенополиуретан» в пункте 5 постепенно вносить в «Бутилацетат» до получения раствора по консистенции как жидкая сметана

3. Включаем центрифугу

4. Открываем центрифугу, наносим вазелин на бронзовый грибок и распределяем тонко по поверхности.

5. Взяли алюминиевый электрод, нанесли его на вазелин и совместили центр электрода с центром грибка

6. На электрод наносим раствор (раствор полиуретана в бутилацетате). Распределяем его по всей поверхности и собираем излишки раствора.

7. Запускаем центрифугу на скорости 5000 об/мин.

8. После открытия центрифуга аккуратно, не повредив слой нанесенной пленки, снимаем электрод с нанесенной пленкой.

9. Повторить с 6 по 9 пункт

10. Совмещаем два электрода диэлектрическими пленками друг к другу, поместив между ними небольшое количество бутилацетата либо нашего раствора

11. Полученный конденсатор надо положить под пресс для наилучшего сращивания пленок

12. Убираем погрешность измерительных контактов на измерительной установке????:

12.1. Запускаем установку

12.2. Подключаем измерительные контакты к щупальцам установки

12.3. Заходим в меню и выбираем первый пункт OFFSET

12.4. При разомкнутых контактах убираем погрешность измерений емкости

12.5. При замкнутых контактах убираем погрешность сопротивления и индуктивности

12.6. Выход из меню

13. Помещаем полученный конденсатор между измерительными электродами

14. Результаты замера емкости заносим в отчет

Лабораторная работа № 5

15.11.2018 13:58

Повышенный интерес к серебру вновь возник в связи с выявленным его действием в организме как микроэлемента, необходимого для нормального функционирования органов и систем, а также мощными антибактериальными и противовирусными свойствами.

Активное применение антибиотиков вызвало рост аллергических осложнений антибактериальной терапии, токсическое действие антибиотиков на внутренние органы и подавление иммунитета, возникновение грибкового поражения дыхательных путей и дисбактериоза после длительной антибактериальной терапии, а также появлением устойчивых штаммов возбудителей к используемым антибиотикам.

Широкий спектр противомикробного действия серебра, отсутствие устойчивости к нему у большинства патогенных микроорганизмов, низкая токсичность, отсутствие аллергии к серебру, а также хорошая переносимость больными - способствуют повышенному интересу к серебру во многих странах мира.

Действие серебра специфично не по инфекции (как у антибиотиков), а по клеточной структуре. Любая клетка без химически устойчивой стенки (такое клеточное строение имеют бактерии и другие организмы без клеточной стенки, например, внеклеточные вирусы) подвержена воздействию серебра. Поскольку клетки млекопитающих имеют мембрану совершенно другого типа (не содержащую пептидогликанов), серебро никаким образом не действует на них.

Коллоидное наносеребро - новый антибактериальный продукт, состоящий из микроскопических наночастиц серебра, взвешенных в деминерализованной и деионизированной воде. Это продукт высоких научных технологий.

Все больше медицинских, гигиенических и косметических средств появляется на прилавках аптек и магазинов с наночастицами серебра или с ионами серебра . В чем разница между этими двумя терминами? Потребители, зачастую, не видят разницы между наночастицами серебра и ионами серебра. Между тем, наночастицы серебра и ионы серебра имеют существенные отличия.

Отличие в физической активности

Ион серебра - это один атом серебра, лишённый электрона. Из-за этого ион всегда активный, заряженный. Ион теряет свою активность за счёт присоединения к себе недостающего электрона и, как следствие, перестает быть эффективным.

В зависимости от состава, в котором они присутствуют, ионы очень быстро теряют свою активность за счёт присоединения к себе недостающего электрона (путём соединения с компонентами состава) и перестают быть эффективными. Как только ион серебра соединяется с каким-либо веществом, он перестаёт быть чистым серебром. Он становится частью другой молекулы, которая уже не имеет тех свойств, ради которых ион был использован в составе продукта.

При нанесении косметического средства с ионами серебра на поверхность эпидермиса ионы серебра успеют обезвредить небольшое количество бактерий, но преодолеть эпидермальный барьер и полностью уничтожить очаги инфекций, не могут. Чтобы ионам серебра попасть в дерму, нужно использовать такое количество средства, которое окажет негативное влияние на организм.

Наночастицы серебра - это несколько тысяч атомов серебра, объединённых в маленькие кристаллы. Они уравновешены и нейтральны.

При нанесении косметического средства с наночастицами серебра на поверхность эпидермиса наночастицы не стремятся соединиться с другими веществами, поскольку у них нет дисбаланса в количестве электронов, а значит они не теряют своей активности в течение длительного времени и могут оказывать полезное действие дольше. Наночастицы серебра легко проникают во внутренние слои кожи и оказывают сильное антибактериальное действие именно за счёт своего размера. Этим объясняются отличия наночастиц серебра от ионов серебра в их активности и безопасности для человека:

  • наночастица - химически неактивна (но активна в отношении простейших микроорганизмов);
  • ион - химически активен (в процессе поиска недостающего электрона).

Отличие в механизме антибактериального действия

Ионы серебра действуют по принципу угнетения жизненной функции бактерии. Проникая внутрь бактерии, ионы серебра действуют как токсины, отравляют бактерию, тем самым вызывая ее гибель. Ионы серебра блокируют каналы, через которые питаются бактерии, осуществляя свою жизнедеятельность. В процессе уничтожения бактерий подобным образом расходуется очень большое количество ионов, поэтому препараты с ионами дают краткосрочный и неполный эффект, так как невозможно обеспечить нужное количество ионов в дерме постоянно и в нужном количестве.

У ионов серебра низкая эффективность. В препаратах ионы серебра чаще всего выступают в роли консерванта, а антибактериальное действие выполняет антибиотик. Бактерии вырабатывают способы защиты от различных антибиотиков, по-разному предотвращая проникновение токсина внутрь или нейтрализуя его специальными веществами.

Наночастицы серебра действуют иначе, они разрушают клеточные стенки бактерий, вызывая их моментальную гибель от физического разрушения, а не от отравления токсином. Бактерии распадаются и погибают, а наночастицы способны функционировать дальше. Этот путь уничтожения бактерий не оставляет им возможности адаптироваться, выработать механизм защиты и передать его следующим поколениям.

Несомненный плюс наночастиц по сравнению с ионами заключается в том, что поверхностное покрытие на наночастице - с одной стороны защитное, а с другой стороны может выступать, как площадка для переноса различных активных веществ.

На поверхности наночастиц можно пронести в дерму очень важные элементы, различные витамины, полезные кислоты (природного происхождения), которые необходимы коже. Наночастицы адресно насыщают кожу необходимыми веществами, не затрагивая остальные органы и ткани.

Чтобы убить одинаковое количество бактерий, ионов серебра в растворе нужно в 100 раз больше, чем наночастиц серебра. Поэтому даже небольшое количество наночастиц серебра в продукте способно обеспечить высокую эффективность. Наночастицы серебра могут долго оставаться на поверхности кожи, ионы серебра на это неспособны, так как очень подвержены воздействию ультрафиолета (солнечного света).

Основные отличия наночастиц серебра от ионов серебра

Наночастица серебра:

  • внешний вид - несколько тысяч атомов серебра, объединенных в маленькие кристалы;
  • активность - химически неактивна (активна в отношении микроорганизмов);
  • механизм действия - разрушает клеточную стенку бактерии;
  • продолжительность действия - длительная антибактериальная эффективность;
  • способ защиты у бактерий против наночастиц - не выработан;
  • проникновение в дерму - легко проникает в дерму за счет сверхмалого размера;
  • покрытие специальным составов - покрыты активными веществами.

Ион серебра:

  • внешний вид - один атом серебра без электрона;
  • активность - химически активны (активны в процессе поиска недостающего электрона);
  • механизм действия - действует как токсин;
  • продолжительность действия - быстро теряет эффективность после уничтожения бактерии;
  • способ защиты у бактерий против ионов - адаптируются;
  • проникновение в дерму - не все ионы способны преодолеть кожный барьер;
  • покрытие специальным составов - нет.

Таким образом, наночастицы серебра гораздо эффективнее и безопаснее ионов серебра. В составе косметических и гигиенических средств наночастицы серебра полностью справляются со своей задачей, оказывая антибактериальное и противогрибковое действие.

Все препараты ARGITOS разработаны по специальной технологии на основе коллоидного наносеребра с применением натуральных продуктов и природных веществ. Они не содержат продукты нефтепереработки, вредные и токсичные компоненты, не вызывают аллергию.


1.2 Основные методы получения наночастиц серебра

1.2.1 Получение наночастиц серебра методом химического восстановления в растворах

Наночастицы серебра в водных растворах получают путем восстановления ионов серебра с помощью глюкозы, аскорбиновой кислоты, гидразина, боргидрида натрия и других восстановителей. Реакцию восстановления проводят в различных условиях. Восстановление глюкозой проводят при нагревании до 60 0 С. Для увеличения скорости протекания реакции используют гидроксид натрия. Полученные частицы исследуют различными способами: методом рентгеновской дифракции (XRD), методом трансмиссионной электронной микроскопии (TEM), а также проводились исследования на спектрофотометре. Исследования показали, что в ходе восстановления в водных растворах были получены частицы размером 10 – 20нм, λ = 1.5418 A°

К способам управления размерами наночастиц, применяемым в научной практике, относятся: использование полимерных матриц, позволяющих управлять размерами нанокластеров, полимерной защиты; физические методы управления размерами (обработка ультразвуком, облучение рентгеновским излучением и использование токов высокой чистоты). Изменение размера нанокластеров металлов добиваются также варьированием природы восстановителя . Так, использование боргидрида натрия при восстановлении позволяет в большинстве случаев получить наночастицы серебра с узким распределением по размерам в пределах 2-8 нм. Восстановление более мягким восстановителем, таким как гидразин, приводит к образованию более крупных наночастиц металлов с размерами 15-30 нм. При варьировании условий восстановления возможно получение практически монодисперсных наночастиц. Строение и размер продукта в большой степени зависит от условий реакции таких как температура и концентрация нитрата серебра. Например, когда температура понижается до 120 или увеличивается до 190, в полученном продукте доминируют наночастицы с нерегулярной структурой (формой). Начальная концентрация нитрата серебра должна быть не больше 0.1М, в противном случае будет выпадать в виде осадка металлическое серебро. Наночастицы серебра с различными размерами могут быть получены в результате увеличения времени проведения реакции.

Для исследования влияния рН на устойчивость водных коллоидных растворов, раствор нитрата серебра был предварительно обработан и его значение рН установлено по растворам NaOH и HCl. Процесс восстановления серебра шел замедленно в сильнокислых (рН 1.5) и в основных (рН 12.5) условиях. Коллоидный раствор в щелочной среде сохраняет устойчивость в течении больше, чем 2 недели без образования осадка. В то время как в кислотных условиях подобная стабильность не наблюдается, образовавшиеся агригаты сохраняются лишь в течении 5 дней при рН 1.5.

Также известны способы получения наночастиц серебра в неводных средах. Наночастицы серебра с фиксированным размером были синтезированы с помощью модифицированного высокомолекулярного процесса, который предполагает восстановление нитрата серебра с этиленгликолем в присутствии стабилизаторов, таких как поливинилпирролидон . Несмотря на то, что принцип селективности для этих систем еще не полностью изучен, предполагают, что селективная адсорбция ПВП на различных кристаллографических плоскостях серебра определяет морфологию продукта.

Оптические измерения коллоидных наночастиц серебра в этаноле показывают единственный максимум при длине волны 395нм, который связан с поверхностным плазмонным резонансом. Это и соответствует сферическим наночастицам серебра размером 5-8нм. Наблюдался процесс разрушения наночастицы при прохождении через энергетический барьер: должно накопиться необходимое для разрушения наночастицы количество энергии и, одновременно, проникнуть в запрещенную энергетическую зону и индуцировать многофотонный процесс.

1.2.1.1 Получение наночастиц серебра методом фотолиза

Процесс фотолиза, с помощью лазерного возбуждения, также может быть использован для получения наночастиц серебра в коллоидных растворах. Камат в своей работе предполагал, что в процессе фотолиза наночастицы серебра теряют электроны за счет фотоэжекции, образуя переходное состояние, которое предшествует окончательному разделению больших частиц. Таками считал, что уменьшение размера частиц наблюдается после облучения нановторичными Nd:YAG лазерными импульсами. Это объясняется частичным нагревом, плавлением и испарением поверхностного слоя. Моханти предполагал, что лазерное облучение разбивает наночастицы серебра на мельчайшие фрагменты, которые снова образуют частицы новых размеров. Таким образом, основным способом контроля размера образующихся наночастиц является облучение.

1.2.1.2 Получение наночастиц серебра с помощью лазерного излучения

В последние несколько лет для получения коллоидных частиц металлов использовалось лазерное облучение. Для элементов, в первых работах Мафуна , было показано, что получение наночастиц с помощью лазера, может быть выполнено в растворах, эта возможность используется металлическими коллоидными частицами, без учета ионов в конце процесса образования наночастиц. Изучается возможность расширения этого процесса для большего числа различных растворителей отличных от воды, что было представлено в работах Амондола , который предложил способ контролирования металлических кластерных соединений за счет переизлучения, мониторинга результатов с помощью исследования оптических свойств. Совсем недавно исследовалось прямое влияние лазерного излечения на золото-серебряную коллоидную смесь, что дало новые способы получения сплавов наночастиц.

Контроль размера, формы и структуры металлических наночастиц технологически важны из-за сильных корреляций между этими параметрами и оптическими, электрическими и кристаллическими свойствами.


Применении пероксида водорода. 2. Экспериментально определить влияние различных катализаторов на процесс разложения пероксида водорода. 3. Исследовать влияние поверхностно-активных веществ (твина – 80) на устойчивость пероксида водорода в водных растворах. ОСНОВНАЯ ЧАСТЬ 1. Пероксид водорода 1.1 Строение молекулы. Физические и химические свойства Пероксид водорода – соединение...



... «Анализ смеси катионов 1 аналитической группы (Na+, K +, NH4+)». Цель работы: закрепление знаний, полученных при изучении свойств катионов; выработка навыков и умений систематического анализа катионов. Оборудование: пробирки, держатель, спиртовка, фильтровальная бумага, индикаторная бумага, стеклянные палочки, анализируемый раствор, реактив Несслера, гидротартрат натрия, дигидроантимонат...

При изучении синтеза новых материалов и процессов ионного транспорта в них. В чистом виде такие закономерности наиболее четко прослеживаются при исследовании монокристаллических твердых электролитов. В то же время при использовании твердых электролитов в качестве рабочих сред функциональных элементов необходимо учитывать, что нужны материалы заданного вида и формы, например в виде плотной керамики...

МЕДИЦИНА: О ФИЗИОЛОГИЧЕСКОМ ВОЗДЕЙСТВИИ НАНОСЕРЕБРА НА ОРГАНИЗМ ЧЕЛОВЕКА

Наночастицы серебра

Олег Мосин

Серебро – металл белого цвета, практически не изменяющийся под воздействием кислорода воздуха при комнатной температуре, однако из-за наличия в воздухе сероводорода со временем покрывается тёмным налётом сульфида серебра, который можно удалить механически, используя различные чистящие пасты или тонкий зубной порошок. Соляная, серная кислота и царская водка на серебро не действуют, поскольку на поверхности металла образуется защитная плёнка хлорида серебра AgCl. Серебро хорошо растворяется лишь в азотной кислоте с образованием растворимого нитрата серебра AgNO3 .

Бактерицидные свойства серебра известны с глубокой древности. Еще в Древней Индии с помощью этого металла обеззараживали воду, а персидский царь Кир хранил воду в серебряных сосудах. Историк древнего мира Геродот приводит сведения о том, что в V веке до нашей эры персидский царь Кир во время походов пользовался питьевой водой, сохраняемой в серебряных “священных сосудах”. В религиозных индусских книгах встречаются упоминания об обеззараживании воды путем кратковременного погружения в нее раскаленного серебра, либо в результате длительного контакта с этим металлом в обычных условиях.

В некоторых странах существовал обычай при освящении колодцев бросать в воду серебряные монеты, тем самым улучшая качество воды, а также хранить воду в серебряных чашах. Американские первооткрыватели, путешествуя, часто клали серебряный доллар в молоко, чтобы задержать его скисание.

  • Широкое распространение при лечении ран серебро получило во время Великой Отечественной войны . Серебряную воду применяли при лечении свищей и язв, образовавшихся в результате костного туберкулеза и туберкулеза лимфатических желез с распадом и нагноением. Результаты лечения, как правило, были положительные: язвы и свищи, не закрывавшиеся у некоторых больных несколько лет, несмотря на систематическое лечение кварцем, рыбьим жиром, мазью Вишневского и другими препаратами, после применения серебряной воды полностью закрывались и заживали.

Пионером исследований в области серебра считают французского врача Бенье Креде , который в конце XIX века сообщил об успехах в лечении сепсиса ионами серебра. Продолжая исследования, он выяснил, что серебро в течение трех дней убивает дифтерийную палочку, в течение двух - стафилококки, а возбудитель тифа - за сутки.

В конце XIX столетия швейцарский ботаник ботаник Карл Негель установил, что причиной гибели клеток микроорганизмов является воздействие на них ионов серебра. Ионы серебра выступают в роли защитников, уничтожая болезнетворные бактерии, вирусы, грибки. Их действие распространяется более чем на 650 видов бактерий (для сравнения – спектр действия любого антибиотика 5–10 видов бактерий). Интересно, что полезные бактерии при этом не погибают, а значит не развивается дисбактериоз, столь частый спутник лечения антибиотиками .

При этом серебро не просто металл, способный убивать бактерии, но и микроэлемент, являющийся необходимой составной частью тканей любого живого организма. В суточном рационе человека должно содержаться в среднем 80 мкг серебра. При употреблении ионных растворов серебра не только уничтожаются болезнетворные бактерии и вирусы, но и активизируются обменные процессы в организме человека, повышается иммунитет.

В 1942 году англичанину Р. Бентону удалось остановить эпидемию холеры и дизентерии, свирепствовавшую на строительстве дороги Бирма - Ассам. Бентон наладил снабжение рабочих чистой питьевой водой, обеззараженной с помощью электролитического растворения серебра (концентрация серебра 0,01 мг/л).

Когда бактерицидные свойства серебра были изучены, оказалось, что решающую роль здесь играют положительно заряженные ионы серебра Ag+. Ионизация серебра повышает активность в водных растворах. Катионы серебра подавляют деятельность фермента, обеспечивающего кислородный обмен у простейших микроорганизмов болезнетворных бактерий, вирусов и грибков (порядка 700 видов патогенной «флоры» и «фауны»). Скорость уничтожения зависит от концентрации ионов серебра в растворе: так, кишечная палочка погибает через 3 мин при концентрации 1 мг/л, через 20 мин - при 0,5 мг/л, через 50 мин - при 0,2 мг/л, через 2 ч - при 0,05 мг/л. При этом обеззараживающая способность серебра выше, чем у карболовой кислоты, сулемы и даже таких сильных окислителей, как хлор, хлорная известь, гипохлорид натрия .

  • Серебро - не просто металл, но важный для организма микроэлемент, необходимый для нормального функционирования желез внутренней секреции, мозга и печени . Но серебро - тяжелый металл, и его насыщенные растворы не полезны человеку: предельно допустимая концентрация серебра - 0,05 мг/л. При приеме 2 г солей серебра возникают токсические явления, а при дозе в 10 г вероятен летальный исход. Кроме того, если превышать предельную дозу в течение нескольких месяцев, возможно постепенное накапливание металла в организме.

Высокая биологическая активность микроэлементов-металлов в организме связана, прежде всего, с участием их в синтезе некоторых ферментов, витаминов и гормонов. По данным А.И. Войнара , в суточном рационе человека в среднем должно содержаться 80 мкг ионов серебра. Установлено, что в организме животных и человека содержание серебра составляет 20 мкг на 100 г сухого вещества. Наиболее богаты серебром мозг, железы внутренней секреции, печень, почки и кости скелета.

  • Ионы серебра принимают участие в обменных процессах организма . В зависимости от концентрации его катионы могут как стимулировать, так и угнетать активность ряда ферментов. Под влиянием серебра в два раза усиливается интенсивность окислительного фосфорилирования в митохондриях головного мозга, а также увеличивается содержание нуклеиновых кислот, что улучшает функцию головного мозга.

При инкубации различных тканей в физиологическом растворе, содержащем 0,001 мкг катиона серебра, возрастает поглощение кислорода мозговой тканью на 24%, миокардом – на 20%, печенью – на 36%, почками – на 25%. Повышение концентрации ионов серебра до 0,01 мкг снижало степень поглощения кислорода клетками этих органов, что свидетельствует об участии катионов серебра в регуляции энергетического обмена.

В лаборатории вирусологии Киевского государственного университета проводились исследования по изучению физиологического действия серебра. Установлено, что дозы серебра 50; 200 и 1250 мкг/л оказывают благотворное влияние на экспериментальных животных. Крысы, которые пили воду, содержащую ионы серебра, прибавляли в весе и развивались быстрее, чем животные контрольной группы. С помощью спектрального анализа в печени экспериментальных животных было обнаружено 20 мкг серебра на 100 г сухой массы, что соответствовало нормальному содержанию серебра в печени крыс.

Этими сследованиями было доказано, что дозы серебра 50–250 мкг/л являются физиологическими и не оказывают вредного воздействия на организм при длительном применении. К такому же выводу пришли ряд исследователей, изучая влияние серебра, вводимого в дозах, значительно превышающих предельно допустимые, на органы и системы человека и животных. Так, патогистологические исследования подопытных животных, которые получали с питьевой водой серебро в дозах 20000–50000 мкг/л, показали, что при длительном введении в организм ионного серебра происходит накопление его в тканях организма. Однако отложение серебра в тканях не сопровождалось воспалительными и деструктивными изменениями внутренних органов.

  • Исследованиями А.А. Масленко показано, что длительное употребление человеком питьевой воды, содержащей 50 мкг/л серебра (уровень ПДК), не вызывает отклонений от нормы функции органов пищеварения. Не было обнаружено в сыворотке крови изменений активности ферментов, характеризующих функцию печени. Не выявлено также патологических сдвигов в состоянии других органов и систем человека и при употреблении в течении 15 суток воды, обработанной серебром в дозе 100 мкг/л, то есть в концентрациях, в два раза превышающих допустимые .

Следует подчеркнуть, что длительное применение больших доз серебра – концентрацией раствора 30 – 50 мг/л в течение 7–8 лет c лечебной целью, а также при работе с соединениями серебра в производственных условиях может привести к отложению серебра в коже и изменению окраски кожи – аргирии , профессиональной болезни ювелиров («цвет загара»), которая является следствием фотохимического восстановления ионов серебра. При обследовании ряда больных с явлениями аргирии не выявлено изменений в функциональном состоянии органов и систем, а также в биохимических процессах, происходящих в организме, более того у всех людей с признаками аргирии наблюдалась резистентность к большинству вирусных и бактериальных инфекций.

Большое влияние на развитие аргирии оказывает индивидуальная предрасположенность организма к серебру, качественные и количественные показатели иммунитета и другие факторы. Косвенным доказательством этого может служить факт, что дозы, которые могут приводить к аргирии, различны. В литературе имеются указания на то, что у некоторых людей даже при приеме больших доз серебра аргирия не возникает. По данным Вудворда Р.Л. и других исследователей, дозы серебра 50–200 мкг/л, исключают возможность аргирии.

  • При изучении действия препаратов серебра на организм человека отмечено его стимулирующее действие на кроветворные органы, проявляющееся в исчезновении молодых форм нейтрофилов, увеличении количества лимфоцитов и моноцитов, эритроцитов и гемоглобина, замедлении СОЭ .

В последние годы в научной литературе появились сведения о том, что серебро является мощным иммуномодулятором, сравнимым со стероидными гормонами. Установлено, что в зависимости от дозы, серебро может как стимулировать, так и подавлять фагоцитоз. Под влиянием серебра повышается количество иммуноглобулинов классов А, М, G, увеличивается процентное содержание абсолютного количества Т-лимфоцитов.

Таким образом, в свете современных представлений, серебро рассматривается как микроэлемент, необходимый для нормального функционирования внутренних органов и систем, а также как мощное средство, повышающее иммунитет и активно воздействующее на болезнетворные бактерии и вирусы. В концентрации 0,05–0,1мг/л серебро оказывает омолаживающее воздействие на кровь и благотворно влияет на протекание физиологических процессов в организме .

Установлено, что в зависимости от дозы, серебро может как стимулировать, так и подавлять фагоцитоз. Под влиянием серебра повышается количество иммуноглобулинов классов А, М, G, увеличивается процентное содержание абсолютного количества Т-лимфоцитов. В малых дозах оно оказывает омолаживающее действие на кровь и благотворно влияет на протекание физиологических процессов в организме. При этом отмечается стимуляция кроветворных органов, увеличивается число лимфоцитов и моноцитов, эритроцитов и процент гемоглобина, а также замедляется СОЕ.

Действие ионов серебра на микробную клетку

Основоположником научного изучения механизма действия серебра на микробную клетку является швейцарский ботаник Карл Негель , который в 80-е годы XIX века установил, что взаимодействие не самого металла, а его ионов с клетками микроорганизмов вызывает их гибель. Это явление он назвал олигодинамией (от греч. «олигос» – малый, следовый, и «динамос» – действие, т.е. действие следов). Ученый доказал, что серебро проявляет олигодинамическое действие только в растворенном (ионизированном) виде. В последующем его данные были подтверждены и другими исследователями.

  • Немецкий ученый Винцент, сравнивая активность некоторых металлов, установил, что наиболее сильным бактерицидным действием обладает серебро, меньшим – медь и золото. С.С.Боткин, а затем А.П. Виноградов, объяснили этот факт зависимостью биологических свойств микроэлементов от места, занимаемого ими в Периодической системе Д.И. Менделеева .

Так, дифтерийная палочка погибала на серебряной пластинке через три дня, на медной – через шесть дней, на золотой – через восемь. Стафилококк погибал на серебре через два дня, на меди через три, на золоте – через девять дней. Тифозная палочка на серебре и меди погибала через 18 ч, а на золоте – через шесть – семь дней.

Большой вклад в изучение антимикробных свойств серебряной воды, ее применения для обеззараживания питьевой воды и пищевых продуктов внесен академиком Л.А. Кульским . Его экспериментами, а позднее и работами других исследователей доказано, что именно ионы металлов и их диссоциированные соединения (вещества, способные в воде распадаться на ионы) вызывают гибель микроорганизмов. Во всех случаях при бактерицидном эффекте степень активности серебра тем больше, чем выше концентрация ионов серебра.

Сегодня наукой доказано, что серебро в ионном виде обладает бактерицидным, противовирусным, выраженным противогрибковым и антисептическим действием и служит высокоэффективным обеззараживающим средством в отношении патогенных микроорганизмов, вызывающих острые инфекции .

  • Эффект уничтожения бактерий препаратами серебра чрезвычайно велик. Он в 1750 раз сильнее действия той же концентрации карболовой кислоты и в 3,5 раза сильнее действия сулемы. Всего 1мг/л серебра в течении 30 минут вызывал полную инактивацию вирусов гриппа А, В, Митре и Сендай. Уже при концентрации 0,1 мг/л серебро обладает выраженным фунгицидным действием. При микробной нагрузке 100 000 клеток на один литр гибель грибов Candida albicans наступает через 30 минут после контакта с серебром. По данным академика АН УССР Кульского Л.А. действие серебряной воды при одинаковых концентрациях выше действия хлора, хлорной извести, гипохлорида натрия и других сильных окислителей.
  • Что самое интересное, при применении допустимых концентраций, серебряная вода, убивая всю патогенную и условно-патогенную флору организма, остаётся относительно безопасной для собственной полезной флоры организма (сапрофитов). Ещё один интересный факт: если при лечении инфекции, из-за образования антибиотико-устойчивых форм бактерий приходиться менять препарат каждый 5 дней, то к серебряной воде ни одна бактерия или вирус не образуют устойчивых форм. Серебряная вода также оказывает губительное действие и на антибиотико-устойчивые формы .

Установлено, что растворы серебра являются самым эффективным средством при непосредственном соприкосновении с поверхностями, гноящимися и воспалёнными вследствие бактериального заражения.

Результаты применения серебряной воды свидетельствуют об эффективности её действия при желудочно-кишечных заболеваниях, холециститах, инфекционных гепатитах, холангитах, панкреатитах, дуоденитах, любых кишечных инфекциях без опасения погубить собственную полезную микрофлору и вызвать дисбактериоз. С успехом лечится язвенная болезнь желудка и 12 п.к., так как уничтожаются бактерии хеликобактер – пилори и кампилобактер – пилори, постоянно живущие на слизистых оболочках желудка и кишечника и активно поддерживающие эрозивные и язвенные процессы в ЖКТ.

В.С. Брызгунов с соавтором выявили, что серебро обладает более мощным антимикробным эффектом, чем пенициллин, биомицин и другие антибиотики, и оказывает губительное действие на антибиотикоустойчивые штаммы бактерий. На золотистый стафилококк, вульгарный протей, синегнойную и кишечную палочки, представляющих особый интерес для клиницистов, ионы серебра оказывают различное противомикробное действие – от бактерицидного (способность убивать микробы) до бактериостатического (способность препятствовать размножению микробов). В отношении золотистого стафилококка и большинства кокков оно иногда значительно превосходит по своей выраженности действие антибиотиков.

  • Имеются данные, что чувствительность разных патогенных и непатогенных организмов к серебру неодинакова. Выявлено, что патогенная микрофлора намного более чувствительна к ионам серебра, чем непатогенная. Основываясь на этом факте, Ю.П.Мироненко, еще в 1971 году, разработал способ лечения дисбактериоза различного происхождения ионным раствором серебра (концентрация 500 мкг/л) методом полостного электрофореза, достигая при этом стойкого терапевтического эффекта.

Рядом исследователей установлено, что ионы серебра обладают выраженной способностью инактивировать вирусы осповакцины, гриппа штаммов А-1, В, некоторых энтеро- и аденовирусов, а также ингибировать вирус СПИДа и оказывают хороший терапевтический эффект при лечении вирусного заболевания Марбург, вирусного энтерита и чумы у собак. При этом выявлено большое преимущество терапии коллоидным серебром по сравнению со стандартной терапией. Однако в эксперименте Л.В. Григорьевой установлено, что для полной инактивации бактериофага кишечной палочки N163, вируса Коксаки серотипов А-5,А-7,А-14 необходима более высокая концентрация серебра (500–5000 мкг/л) нежели для эшерихий, сальмонелл, шигелл и других кишечных бактерий (100–200 мкг/л.) .

Среди многочисленных теорий, объясняющих механизм действия серебра на микроорганизмы, наиболее распространенной является адсорбционная теория, согласно которой клетка теряет жизнеспособность в результате взаимодействия электростатических сил, возникающих между клетками бактерий, имеющих отрицательный заряд, и положительно заряженными ионами серебра при адсорбции последних бактериальной клеткой.

  • В общих чертах механизм борьбы серебра с одноклеточными (бактериями) и бесклеточными микроорганизмами (вирусами) представляет следующее: серебро реагирует с клеточной мембраной бактерии, которая представляет собой структуру из особых белков (пептидогликанов), соединенных аминокислотами для обеспечения механической прочности и стабильности. Серебро взаимодействует с внешними пептидогликанами, блокируя их способность передавать кислород внутрь клетки бактерии, что приводит к «удушью» микроорганизма и его гибели .

Некоторые исследователи, объясняя механизм воздействия серебра на клетку, особое значение придают физико-химическим процессам. В частности окислению протоплазмы бактерий и ее разрушению кислородом, растворенным в воде, причем серебро играет роль катализатора. Вораз и Тоферн (1957) объясняли антимикробное олигодинамическое действие серебра выведением из строя ферментов, содержащих SH- и СООН- группы, а Тонли K., Вилсон H. – нарушением ее осмотического равновесия .

Имеются данные, свидетельствующие об образовании комплексов нуклеиновых кислот с тяжелыми металлами, вследствие чего нарушается стабильность ДНК и, соответственно, жизнеспособность бактерий.

  • Существует также мнение, что серебро не оказывает прямого воздействия на ДНК клеток, а действует косвенно, увеличивая количество внутриклеточных свободных радикалов, которые снижают концентрацию внутриклеточных активных соединений кислорода.

Также допускают, что одной из причин широкого противомикробного действия ионов серебра является ингибирование транс-мембранного транспорта Nа+ и Cа++, вызываемая серебром.

Таким образом, механизм действия серебра на микробную клетку в свете современных данных заключается в том, что ионы серебра сорбируются клеточной оболочкой, которая выполняет защитную функцию. Клетка остается жизнеспособной, но при этом нарушаются некоторые ее функции, например деление (бактериостатический эффект). Как только на поверхности микробной клетки сорбируется серебро, оно проникает внутрь клетки и ингибирует ферменты дыхательной цепи, а также разобщает процессы окисления и окислительного фосфорилирования в микробных клетках, в результате чего клетка гибнет.

Особый интерес представляет действие ионов серебра на клетки макроорганизма. Обнаружено, что при инкубации костного мозга мышей и микроорганизмов в растворе, содержащем ионы серебра, морфология эритроцитов и лейкоцитов оставалась неизмененной, тогда как микроорганизмы полностью уничтожались .

Мышиные клетки под воздействием ионов серебра округлялись, но не разрушались, причем их оболочки не претерпевали изменений. В последующем эти клетки размножались, сохраняя нормальную клеточную структуру и способность к делению и размножению. Данные исследования свидетельствуют об отсутствии повреждающего действия ионного серебра для клеток макроорганизма, в отличие от микроорганизмов.

Коллоидное наносеребро

Изучение целительного действия коллоидного серебра началось со второй половины XIX века после открытия в 70-х годах немецким гинекологом Карлом Креде мощного антигонобленорейного эффекта у 1% раствора азотнокислого серебра. Это открытие позволило ликвидировать в родильных домах Германии гнойные гонорейные воспаления глаз у новорожденных. Фактически с этого момента началась новая эпоха в учении о профилактике опасных бактериальных инфекций.

23 августа 1897 г. немецкий хирург Бенне Креде , продолжив исследования своего отца, доложил на ХII Международном съезде врачей в Москве о широких возможностях применения препаратов серебра в гнойной хирургии и о хороших результатах лечения септической инфекции внутривенным их введением. Тогда же Б. Креде совместно с химиками предложил препараты, содержащие серебро в неионизированном состоянии: в виде коллоидных частиц металлического серебра (препарат колларгол) и золя окиси серебра (препарат протаргол), модификации которых прослужили в медицине более ста лет. В отличие от ранее применяемых солей серебра они не обладали прижигающим эффектом.

  • В России коллоидное серебро также получило высокую оценку врачей, что способствовало его активному использованию в военно-полевой хирургии на полях русско-японской войны 1904 г.

Серебро в форме внутривенного введения с успехом применялось при лечении септических артритов, ревматизма, ревматических эндокардитов, ревматоидного артрита, бронхиальной астмы, гриппа, острых респираторных заболеваний, бронхита, пневмоний, гнойных септических заболеваний, бруцеллеза, внутрь – при лечении гастритов, анастомозитов и гастродуоденальных язв, наружно – при лечении венерических заболеваний, гнойных ран и ожогов.

Широкий спектр противомикробного действия серебра, отсутствие устойчивости к нему у большинства патогенных микроорганизмов, низкая токсичность, отсутствие в литературе данных об аллергенных свойствах серебра, а также хорошая переносимость больными – способствовали повышенному интересу к серебру во многих странах мира .

  • В 1910 г. фирма «Гейден» , обобщив опыт практического применения серебра в медицине, издала аннотационный обзор, посвященный методике лечения различных инфекционных заболеваний: абсцессов, брюшного тифа, возвратного тифа, воспаления легких, придаточных пазух носа, среднего уха, гингивита, гонококкового сепсиса, дифтерийной жабы, дизентерии, кератита, коньюнктивита, лепры, мягкого шанкра, мастита, менингита, эпилепсии, пиемии, рожистого воспаления, сибирской язвы, сифилитических язв, спинной сухотки, острого суставного ревматизма, трахомы, фарингита, фурункулеза, цистита, эндокардита, эндометрита, хореи, эпидидимита, язвы роговой оболочки.

С открытием антибиотиков и сульфаниламидов интерес к препаратам серебра несколько снизился. Но в последнее время противомикробные свойства серебра вновь стали привлекать к себе внимание. Это связано с ростом аллергических осложнений антибактериальной терапии, токсическим действием антибиотиков на внутренние органы и подавлением иммунитета, возникновением грибкового поражения дыхательных путей и дисбактериоза после длительной антибактериальной терапии, а также появлением устойчивых штаммов возбудителей к используемым антибиотикам.

  • Повышенный интерес к серебру возник вновь в связи с выявленным его действием в организме как микроэлемента, необходимого для нормального функционирования органов и систем, иммунокорригирующими, а также мощными антибактериальными и противовирусными свойствами .

Эффективность бактерицидного действия коллоидного серебра объясняется способностью подавлять работу фермента, с помощью которого обеспечивается кислородный обмен у простейших организмов. Поэтому чужеродные простейшие микроорганизмы гибнут в присутствии ионов серебра из-за нарушения снабжения кислородом, необходимого для их жизнедеятельности.

  • Современные исследования действия коллоидных ионов серебра показали, что они обладают выраженной способностью обезвреживать вирусы осповакцины, некоторые штаммы вируса гриппа, энтеро- и аденовирусов. К тому же они оказывают хороший терапевтический эффект при лечении вирусного энтерита и чумы у собак. При этом выявлено преимущество терапии коллоидным серебром по сравнению со стандартной терапией .
  • Отмечено благотворное действие коллоидных ионов серебра на заживление трофических язв, развивающихся при нарушении кровообращения нижних конечностей. Ни в одном случае не было отмечено побочных эффектов лечения серебром.

Сейчас одна из быстро развивающихся областей современной нанотехнологии – создание и использование наноразмерных частиц различным материалов. Наноматериал, уже сегодня находящий применение в различных коммерческих продуктах – НАНОСЕРЕБРО .

Как известно, серебро – самый сильный естественный антибиотик из существующих на земле. Доказано, что серебро способно уничтожить более чем 650 видов бактерий, поэтому оно используется человеком для уничтожения различных микроорганизмов на протяжении тысячелетий, что свидетельствует о его стабильном антибиотическом эффекте.

  • Коллоидное наносеребро – продукт, состоящий из микроскопических наночастиц серебра, взвешенных в деминерализованной и деионизированной воде. Этот продукт высоких научных технологий производится электролитическим методом .

Типичные наночастицы серебра имеют размеры 25 нм. Они имеют чрезвычайно большую удельную площадь поверхности, что увеличивает область контакта серебра с бактериями или вирусами, значительно улучшая его бактерицидные действия. Таким образом, применение серебра в виде наночастиц позволяет в сотни раз снизить концентрацию серебра с сохранением всех бактерицидных свойств.

  • Бактерицидная добавка на основе наночастиц серебра является одним из последних достижений отечественной науки в области нанобиотехнологий .

Действие серебра специфично не по инфекции (как у антибиотиков), а по клеточной структуре. Любая клетка без химически устойчивой стенки (такое клеточное строение имеют бактерии и другие организмы без клеточной стенки, например, внеклеточные вирусы) подвержена воздействию серебра. Поскольку клетки млекопитающих имеют мембрану совершенно другого типа (не содержащую пептидогликанов), серебро никаким образом не действует на них.

  • В связи со способностью особым образом модифицированных наночастиц серебра длительное время сохранять бактерицидные свойства, рационально использовать наносеребро не в качестве дезинфицирующих средств частого применения, а добавлять в краски, лаки и другие материалы, что позволяет экономить деньги, время и трудозатраты.

Ведущей российской компанией по исследованию свойств наносеребра и использованию его в лакокрасочной продукции является ООО «НПО ФАЛЬКО» .

Водоэмульсионные краски и эмали с наносеребром серии «ЭКОБИО» были исследованы на сильнодействующих штаммах бактерий: сальмонелла, палочка Коха, стафилококк, листерия, энтерококк т.д. В результате проведенных исследований была доказана их высокая эффективность – при попадании на поверхность, покрытую такой краской, концентрация бактерий сразу же снижается на 0,5–2 порядка, а полная гибель колонии происходит через 2 часа.

  • В исследовании свойств красок принимали участие: Российская Академия медицинских наук, Научно-исследовательский институт эпидемиологии и микробиологии им. Н.Ф. Гамалеи, Институт электрохимии им. А.П. Фрумкина и ООО «НПО ФАЛЬКО» .

В наноразмерном диапазоне практически любой материал проявляет уникальные свойства и особенно такое металл как серебро. Ионы серебра обладают антисептической активностью. Значительно более высокой активностью обладает раствор наночастиц серебра. Коллоидное серебро – естественный антибиотик, разрешенный к применению в США Федеральной комиссией по питанию и медикаментам еще в 1920 году. Сотрудник Администрации по пищевым продуктам и лекарственным препаратам (FDA) США Гарольд Дэвис в письме от 13.09.1991 года сообщал, что коллоидное серебро, используемое на рынке США, прошло апробацию еще в 1938 году. Если обработать раствором коллоидного серебра бинт и приложить его к гнойной ране, воспаление пройдет и рана заживет быстрее, чем с использованием обычных антисептиков.

Недавно американские учёные проследили транспорт отдельной наночастицы серебра в эмбрионе рыбки – полосатого данио и исследовали влияние наночастиц серебра на раннее эмбриональное развитие .

Для этого были использованы высокоочищенные и устойчивые наночастицы и оптика высокого разрешения для наблюдения за их положением внутри эмбриона. Было установлено, что отдельная наночастица Ag (5-46 нм диаметром) транспортируется внутрь эмбриона через каналы пор хориона с помощью броуновского движения (а не активным транспортом) с коэффициентом диффузии внутри канала (3×10−9 см2/с), что в ~26 раз ниже чем в яйце (7,7×10−8 см2/с).

Ученые наблюдали за наночастицами серебра внутри эмбрионов на разных стадиях их развития: развитом, деформированном и мертвом. По результатам наблюдений было показано, что биологическая совместимость и токсичность наночастиц серебра сильно зависят от дозы наночастиц с критической концентрацией 0,19 нм. Скорости распространения и накопления наночастиц в эмбрионах, вероятно, ответственны за степень токсичности наночастиц.

В отличие от других методов исследования, отдельная наночастица может быть непосредственно отображена в развивающихся эмбрионах в нанометровом разрешении. Этот метод предлагает новые возможности исследовать события в реальном времени, приводящие к отклонениям в развитии эмбрионов .

Физические свойства наночастиц серебра отличаются от свойств того же серебра (например, уменьшение размеров частицы приводит к уменьшению ее температуры плавления). Технологи научились изготавливать наночастицы различных размеров, формы и химического состава. А вот контролировать число и тип дефектов в наночастицах они пока не умеют. Поэтому в вопросе о влиянии дефектов на характеристики наночастиц остается много нерешённых вопросов. Между тем известно, что наличие дефектов может приводить к весьма существенному изменению свойств наночастиц.

  • Учёные Университета Мэриланд (University of Maryland, США) разработали технологию, которая позволяет изготавливать наночастицы серебра, имеющие одинаковый размер, но при этом являющиеся либо монокристаллическими, либо содержащими большое количество двойников – областей с различной ориентацией кристаллографических осей. Границы раздела между такими областями являются дефектами особого рода (так называемыми дефектами двойникования). Эта технология основана на использовании для синтеза наночастиц различных полимерных предшественников – трифенилфосфина серебра (PPh3)33Ag-R с разными функциональными группами R = Cl, и R = NO3. Если при R = NO3) из зародышей вырастают двойникованные НЧ, то при R = Cl – бездвойниковые. Механизм образования наночастиц серебра со специфической особенностью ионов Cl блокировать образование двойников. При этом средний размер наночастиц составил 10.5 нм.
  • Исследования показали, что физико-химические свойства этих двух типов наночастиц существенно различаются . Например, при взаимодействии с селеном из бездвойниковых наночастиц получались полые наночастицы Ag2Se, а из двойникованных – сплошные однородные наночастицы. Это объясняется тем, что различие коэффициентов диффузии атомов Ag и Se по кристаллической решетке способствует формированию вакансий (скопление которых в итоге и образует полость внутри НЧ), тогда как атомы Se, перемещающиеся не по решетке, а по границам двойников, легко проникают в разделенные этими границами области Ag, в результате чего образуется однородная наночастицы Ag2Se. В двойникованных наночастицах имеет место гораздо более быстрое охлаждение электронной подсистемы после воздействия лазерного импульса (вследствие передачи энергии решетке). Это говорит о том, что границы двойников усиливают электрон-фононное взаимодействие, которое можно регулировать путем изменения концентрации дефектов в наночастицах.
  • Отечественный концерн «Наноиндустрия» разработал технологию производства наночастиц серебра, стабильных в растворах и в адсорбированном состоянии . Получаемые препараты обладают широким спектром противомикробного действия. Таким образом, появилась возможность создания целой гаммы продуктов с антимикробными свойствами при незначительном изменении технологического процесса производителями существующей продукции.

Наночастицы серебра могут быть использованы для модификации традиционных и создания новых материалов, покрытий, дезинфицирующих и моющих средств (в том числе зубных и чистящих паст, стиральных порошков, мыла), косметики. Покрытия и материалы (композитные, текстильные, лакокрасочные, углеродные и другие), модифицированные наночастицами серебра, могут быть использованы в качестве профилактических антимикробных средств защиты в местах, где возрастает опасность распространения инфекций: на транспорте, на предприятиях общественного питания, в сельскохозяйственных и животноводческих помещениях, в детских, спортивных, медицинских учреждениях .

  • Наночастицы серебра можно использовать для очистки воды и уничтожения болезнетворных микроорганизмов в фильтрах систем кондиционирования воздуха, в бассейнах, душах и других подобных местах массового посещения. При помощи установки «УМКА» удается рассмотреть поверхность DVD. Выпускается аналогичная продукция и за рубежом. Одна из фирм производит покрытия с серебряными наночастицами для лечения хронических воспалений и открытых ран.

Коллоидное серебро является безопасным и самым мощным для организма человека натуральным антисептиком, подавляющим более 700 видов болезнетворных микроорганизмов, среди которых стафилококки, стрептококки, бактерии дизентерии, брюшного тифа и др.

Американские исследования (по данным Сайенс Дайджест) показали, что серебро убивает вредные для организма микробы, включая кишечную палочку. Также был использован раствор коллоидного серебра для перевязки ран, распылении при тонзиллитах, в качестве влажной повязки для лечения ожогов и ссадин. Во всех случаях был отмечен хорошими терапевтический эффект.

  • В медицинском центре Нью-Йорского Университета, в отделении Ортопедии, была проведена работа по исследованию действия ионов серебра у больных с послеоперационными инфекционными осложнениями .

Из отчета по работе:

«Для 12 из 14 пациентов лечение было признано удачным, и у всех 14 лечение привело к несомненному уменьшению бактериальной флоры в ране, что показано прямым подсчетом колонии. Ни в одном случае не проявлялось нежелательных последствий лечения серебром». Соединения серебра применяются для лечения 70% случаев ожогов в США .

Интересен тот факт, что более половины авиакомпаний мира используют воду, обработанную серебром, как способ защиты пассажиров от инфекций, таких, как дизентерия. Во многих странах коллоидные ионы серебра используются для дезинфекции воды в бассейнах.

В Швейцарии широко применяют серебряные фильтры для воды в домах и офисах. На Международной Космической Станции употребляется только серебряная вода.

Приготовление серебряной воды

Приготовить серебряную воду в домашних условиях непросто. Если настаивать воду в серебряном сосуде, эффект будет более значительным, чем погружение в воду серебряных предметов.

В настоящее время серебряную воду производят в специальных электрических приборах – ионаторах. Ее также можно получить с помощью установок “Пингвин”, “Дельфин”, “Невотон”, “Георгий” и др. Как правило, эти приборы содержат и фильтр из активированного угля для улавливания вредных примесей.

Принцип действия ионатора серебра основан на электролитическом методе – пропускании постоянного тока через погруженные в воду серебряные (или серебряно-медные) электроды. При этом серебряный электрод (анод), растворяясь, насыщает воду ионами серебра. Концентрация полученного раствора при заданной силе тока зависит от времени работы источника тока и объема обрабатываемой воды .

При включении ионатора в воду начинают выделяться ионы серебра. Спустя некоторое время количество ионов достигает своего предела – точки насыщения и ионизация прекращается сама по себе. Максимальное количество серебра в растворе не может превысить концентраций допустимых для питьевой воды.

Если подобрать грамотно ионатор, то остаточное содержание растворённого в воде серебра не превысит предельной дозы 10–4…10–5 мг/л (при этом в контактном слое серебрения воды концентрации могут достигать значения 0,015 мг/л), что позволяет осуществлять одновременно бактерицидную и бактериостатическую обработку воды. В настоящее время созданы безопасные установки и технологии серебрения воды. На базе них можно получать гарантированно чистую питьевую воду без хлора и без бактерий. Созданы также системы дезинфекции воды методом серебрения для бассейнов.

Современные ионаторы позволяют получать два вида серебряной воды:

  • ПИТЬЕВАЯ – вода, в которой концентрация ионов серебра составляет 35 мкг/литр. Такая вода по санитарным нормам разрешена для употребления в пищу (СанПиН 2.1.4.539–96 допускает содержание серебра в питьевой воде до 50 мкг/литр). Врачи рекомендуют регулярно употреблять такую воду как просто для питья, так с целью профилактики и лечения целого ряда заболеваний. В первую очередь заболеваний желудочно-кишечного тракта. Также питьевая серебряная вода используется для приготовления пищи, для лучшего сохранения домашних заготовок (маринадов, варений и солений). Очень хорошо обрабатывать ею детские игрушки и посуду для защиты их от бактерий.
  • КОНЦЕНТРАТ – вода, в которой концентрация ионов серебра составляет 10 000 мкг/литр. Этой водой можно пользоваться для ингаляций при бронхо-легочных заболеваниях, а также в косметических целях для умывания, для полива растений и их семян, для мытья фруктов и овощей.

Серебряная вода применяется:

  • в хирургической практике (при поражении костей, мышц, суставов, лимфатических узлов и других органов, обусловленном стрепто-стафило-пневмококковой инфекцией, туберкулезной палочкой и др.)
  • в глазной практике (при конъюнктивите, блефарите, кератите, воспалении слезного мешка и других воспалительных процессах)
  • в ЛОР-практике (при поражении наружного слухового прохода, воспалении среднего уха, мастоидите, фарингите, ларингите, гайморите, тонзиллите и рините, а также при различных формах ангины и гриппозных эпидемиях)
  • в педиатрии (наружное применение серебра (серебряной воды), дезинфекция воды для купания детей, дерматозы, детская экзема, ожоги).
  • в практике внутренних заболеваний (при лечении язвы желудка и двенадцатиперстной кишки, хронического гиперацидного гастрита, сопровождающихся изжогами, а также при лечении секреторных неврозов с увеличенным выделением желудочного сока, энтерита и колита, при эндокринологических заболеваниях и нарушении обмена веществ – сахарная болезнь, диатезы)
  • в практике инфекционных заболеваний (при лечении дизентерии, брюшного тифа, паратифа, скарлатины, дифтерии и др.)
  • в акушерско-гинекологической практике (при лечении различных воспалительных процессов слизистой оболочки гинекологической сферы и трещин сосков)
  • в практике кожных заболеваний (при лечении фурункулеза и грибковых поражений кожи)
  • в стоматологической практике (при лечении афтозноульцерозного стоматита, гингивита и других заболеваний полости рта)
  • наружное применение (гнойные раны, гнойничковые заболевания кожи, ожоги, дерматозы, экзема, вульвагиниты, геморрой).
  • бытовое применение серебра (серебряной воды) (консервирование напитков, соков, компотов, обеззараживание питьевой воды в эпидемиологически неблагоприятных районах, замачивание семян перед посадкой (на 23 часа), полив комнатных растений (для обеззараживания земли от микроорганизмов, плесени, грибков), рекомендуется поливать в течение одной недели с 23 недельным перерывом, длительное (до 23 недель) сохранение срезанных садовых цветов, дезинфекция посуды, овощей, фруктов, дезинфекция нательного и постельного белья (путем замачивания на 23 часа), раковин, ванн, санузлов.

Результаты лечения серебряной водой свидетельствуют об эффективности применения ее при лечении желудочно-кишечных заболеваний, холециститов, инфекционных гепатитов, холангитов, панкреатитов, дуоденитов, любых кишечных инфекциях без опасения погубить собственную полезную микрофлору и вызвать дисбактериоз, воспалительных процессах зева, носа, глаз, поверхностных язв и ран обыкновенных и вызванных туберкулезным процессом.

  • Серебром с успехом лечится язвенная болезнь желудка и 12 п.к., так как уничтожаются бактерии, поддерживающие язвенный процесс.
  • Ионы серебра нашли применение при лечении хронического вазоматорно-аллергического ринита и синусита.
  • Успешно применяется серебро в дерматологии и венерологии. Она используется в качестве наружного средства при лечении дерматозов вирусного, дрожжевого, стрепто-стафилококкового и трофического происхождения.
  • Лечение термических ожогов повязками, смоченными серебряной водой по мнению учёных не имеет себе равных по эффективности. Важным свойством этого метода является его абсолютная безболезненность, что чрезвычайно важно при лечении больных с тяжелыми ожогами.
  • Применение серебряной воды при терапии острых и хронических пневмоний, бронхитов (использование через ингаляции), приводит к выздоровлению даже в тяжелых случаях и в короткие сроки, когда не справляются комбинации из нескольких антибиотиков.
  • Орошение и аппликации полости рта для лечения язвенного гингивостоматита, длительно незаживающих язв, острого стоматита, грибковых стоматитов, воспалительно-дистрофической формы парадонтоза позволяют оценить чрезвычайную эффективность препарата.
  • Грипп лечится с помощью ингаляций и промываний полости носа, при этом срок лечения сокращается до 2-х дней и не фиксируются тяжелые реакции организма.

Серебряную воду применяли при лечении желудочно-кишечных заболеваний в клинике Киевского медицинского института, а при воспалительных процессах зева, катаральных ангинах – в Первой поликлинике г. Киева.

  • В Уфимском республиканском тубдиспансере серебряную воду применяли при лечении свищей и язв, образовавшихся в результате костного туберкулеза и туберкулеза лимфатических желез с распадом и нагноением. Результаты лечения, как правило, были положительные: язвы и свищи, не закрывавшиеся у некоторых больных несколько лет, несмотря на систематическое лечение кварцем, рыбьим жиром, мазью Вишневского и другими препаратами, после применения серебряной воды на протяжении двух – пяти месяцев полностью закрывались и заживали.
  • Питьевые профилактические растворы серебра улучшают состав крови, удерживают кальций фосфор в крови в тонкодисперсном состоянии, предупреждают отложение солей на стенках сосудов и суставов, повышают иммунитет организма, предупреждают инфекционные заболевания.
  • Концентрация – 0,1 мг/л. Пить вместо обычной воды в течение б-ти месяцев. Затем перерыв 3 месяца и т.д.
  • Для профилактики внутренних болезней концентрация: 0,1 –0,5 мг/л. Пить по 100 гр. раствора 3–4 раза в день за 20–30 минут до еды. Курс – 3 месяца.
  • Для лечения внутренних болезней применяется концентрация 0,5 – 5,0 мг/л. По 100 гр. раствора 3–4 раза в день за 20 – 3 минут до еды. Курс – 3 месяца. При пищевом отравлении, метеоризме, при послеоперационных рецидивах в почках, печени, кишечнике (свищи). При тяжелых формах этих заболеваний – концентрация раствора увеличивается до 5,0 – 10,0 мг/л.
  • При лечении язвенной болезни желудка и двенадцатиперстной кишки, хронических гипо и гипер-ацидных гастритов, энтеритов, холецистита, эндокринных заболеваний, диабета, диатеза, экзем. Предупреждает развитие травматического сепсиса. Первые 10 дней концентрация – 10 мг/л; следующие 3 недели – 5 мг/л.
  • При лечении инфекционных заболеваний: холеры, чумы, брюшного тифа, паратифа, дизентерии, скарлатины, дифтерии, гепатита «А» и других. При тяжелых формах этих заболеваний – концентрация раствора увеличивается до 10 – 15,0 мг/л.
  • Также серебряная вода применяется для дезинфекции воды неизвестного происхождения (речная, болотная и т.д.). Концентрация – 0,1 мг/л – 4 часа и 0,2мг/л – 2 часа выдержки.
  • Добавление серебряной воды в лекарственные настои, молоко, соки продлевает срок их хранения в несколько раз.
  • Профилактика – перед и во время эпидемий гриппа, в периоды сильных стрессов. Пить для профилактики за 20 – 30 минут до еды.

Приготовление растворов серебряной воды Ag+ удобно и просто производить из имеющегося в продаже концентрата раствора коллоидного серебра – 35 мг/л. Из него можно приготовить серебряную воду любой концентрации, используя имеющиеся под рукой кухонные принадлежности.

На 100 г воды На 1 литр воды

1 чайная ложка (3 мл) – 1,0 мг/л 1 чайная ложка (3 мл) – 0,1 мг/л

1 десертная ложка (6 мл) – 2,0 мг/л 1 десертная ложка (6 мл) – 0,2 мг/л

1 столовая ложка (9 мл) – 3,0 мг/л 1 столовая ложка (9 мл) – 0,3 мг/л

  • Следует учесть, что для употребления внутрь серебряная вода разводится в сырой фильтрованной воде комнатной температуры, а не в кипячёной.

Содержание в питьевой воде серебра регламентируется СанПиН 2.1.4.1074–01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» (содержание в воде серебра не более 0,05 мг/л) и СанПин 2.1.4.1116 – 02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» (содержание в воде серебра не более 0,025 мг/л). Лимитирующий признак вредности вещества, по которому установлен норматив – санитарно-токсикологический. Равноценный класс вредности имеют растворённые в воде никель (Ni) и хром (Cr6+).

Для бактерицидного действия серебра требуются достаточно большие концентрации (около 0,015 мг/л, а при малых концентрациях (10–4…10–6 мг/л) оно оказывает только бактериостатическое действие, т.е. останавливает рост бактерий, не убивая их. Однако спорообразующие разновидности микроорганизмов к серебру практически нечувствительны.

  • Все эти свойства ограничивают применение серебра. Оно может быть уместно только в целях сохранения исходно чистой воды для длительного хранения (например, на космических кораблях или при розливе бутилированной питьевой воды). Часто используются осеребрение фильтров на основе активированного угля. Это делается с целью предотвратить обрастание фильтра микроорганизмами, т.к. отфильтрованные органические вещества являются хорошей питательной средой для многих бактерий.

Хранение концентрата коллоидного серебра производится в светонепроницаемой посуде в тёмном месте. Перед употреблением бутылку с концентратом необходимо несколько раз сильно встряхнуть, т.к. ионы серебра электризуются стеклом.

  • Однако, без надобности пить серебряную воду не следует. Серебро – тяжелый металл, имеющий высокую степень опасности для здоровья (в одном ряду со свинцом, кобальтом, мышьяком и другими веществами). Как и другие тяжелые металлы, серебро способно накапливаться в организме и вызывать серьёзные отравления аргирозы .

Литература

  1. А.В. Бгатов Биогенная классификация химических элементов// http://www.nisleda.net/…e-bgatov.htm «Философия науки» 2(6) 1999.
  2. Silvestry-Rodriguez N, Bright KR, Uhlmann DR, Gerba CP,“Inactivation of Pseudomonas aeruginosa and Aeromonas hydrophila by silver in tap water”//Environmental Science and health 42(11) 2007.
  3. Кульский Л.А. Серебряная вода. -Киев, 1987.
  4. Григорьева Л.В. Водоподготовка и очистка промышленных стоков. -Киев, 1973. -Вып.10. -С. 9–13.
  5. Брызгунов В.С., Липин В.Н., Матросова В..Р. Сравнительная оценка бактерицидных свойств серебряной воды и антибиотиков на чистых культурах микробов и их ассоциациях// Научн.тр.Казанского мед.ин-та. –1964. -Т.14. -С. 121–122.
  6. Chappel J.B., Greville G.D. Effect of silver ions on mitochondrial adenosinetriphosphates// Nature (London). –1954. -Vol.174. -P. 930–931.
  7. Вайнар А.И.Биологическая роль микроэлементов в организме животных и человека 1960 г.
  8. Collargol. (Колларгол). Акционерное общество химическая фабрика фон Гейден. Радебель близ Дрездена. 1910 (обзор), пер. с нем. Место нахождения ЦГНМБ РФ г. Москва.
  9. Безлепко А. В. Кандидат медицинских наук (Главный военный клинический госпиталь имени академика Н. Н. Бурденко) и Гуща И. А. Кандидат медицинских наук (ОАО «ДИОД») Инструкция по медицинскому применению ионного и коллоидного серебра .
  10. Савадян Э.Ш., Мельникова В.М., Беликова Г.П. Современные тенденции использования серебросодержащих антисептиков// Антибиотики и химиотерапия. –1989. -N11. -С. 874–878.
  11. Doer R., Bergner W. Zur Oligodinamie des Silbers// Biochem. Zeitschr. –1922. -N131. -S. 351–356.
  12. Мироненко Ю.П. Полостной электрофорез// Медицинская газета.- 1971 – 26 октября.
  13. Войтенко А.М. Водоподготовка и очистка промышленных стоков. 1973., вып.10., -С.128–134.
  14. Лот Таранов, Ирина Филиппова Серебряная вода, Метод Таранова// Диля 2001 г, С.
  15. Ульянов Ю.П., Доктор мед.наук, Зав. Лор-отделением Медицинского Центра «АГАМИ» (Москва) //Проблемы серебряно-зависимых людей.!
  16. Е.Родимин Приготовление целебных медно-серебряных растворов и металлоионотерапия http://www.rem.org.ru/book.htm .
  17. Shahverdy AR, Fakhimi Ali, Minaian Sara Synthesis and effect of silver nanopracles on the antibacterial activity of different antibiotics against Staphylococcus and Escherichia coli// Nanovedicine-Nanotechnology biology and medicine 3(2): 168–171 Jun 2007.
  18. Eric J. Rentz, DO, MSc Historic Perspectives on Clinical Use and Efficacy of Silver.
  19. Rami Pedahzur, Ovadia Lev, Badri Fattal and Hillel I. Shuval The interaction of silver ions and hydrogen peroxide in the inactivation of E. coli: a preliminary evaluation of a new long acting residual drinking water disinfectant// Water Science and Technology Vol 31 No 5–6 pp 123–129 © IWA Publishing 1995.

Наночастицы серебра представляют собой частицы размером от 1 до 100 нм. Хотя их часто называют «серебром», некоторые из них состоят из большого процента оксида серебра из-за их большого отношения атомов серебра к поверхности. Многочисленные формы наночастиц могут быть построены в зависимости от конкретного применения. Обычно используются сферические наночастицы серебра, но также популярны ромбы, восьмиугольники и тонкие листы. Чрезвычайно большая площадь поверхности наночастиц серебра позволяет координировать огромное количество лигандов. Свойства наночастиц серебра, применяемые для лечения человека, исследуются в лабораторных и животных исследованиях, оценивающих потенциальную эффективность, токсичность и затраты.

Синтетические методы

Жидкостная химическая обработка

Наиболее распространенные методы синтеза наночастиц относятся к категории влажной химии или к зарождению частиц в растворе. Это зарождение происходит, когда комплекс ионов серебра, обычно AgNO3 или AgClO4, восстанавливается до коллоидного серебра в присутствии восстанавливающего агента. Когда концентрация возрастает, растворенные ионы металлического серебра связываются вместе, образуя устойчивую поверхность. Поверхность энергетически невыгодна, когда кластер мал, поскольку энергия, получаемая за счет уменьшения концентрации растворенных частиц, не столь велика, как потеря энергии при создании новой поверхности. Когда кластер достигает определенного размера, известного как критический радиус, он становится энергетически выгодным и, следовательно, достаточно стабильным, чтобы продолжать расти. Это ядро затем остается в системе и растет по мере того, как атомы серебра диффундируют через раствор и прикрепляются к поверхности . Когда растворенная концентрация атомарного серебра достаточно уменьшается, больше невозможно сделать так, чтобы достаточное количество атомов связывалось вместе с образованием стабильного ядра. При этом пороге зарождения, новые наночастицы перестают формироваться, а оставшееся растворенное серебро поглощается диффузией в растущие наночастицы в растворе. По мере роста частиц, другие молекулы в растворе диффундируют и прикрепляются к поверхности. Этот процесс стабилизирует поверхностную энергию частицы и блокирует появление новых ионов серебра на поверхности. Прикрепление этих покрывающих / стабилизирующих агентов замедляет и, в конечном счете, останавливает рост частицы. Наиболее распространенными кэпинг-лигандами являются тринатрийцитрат и поливинилпирролидон (ПВП), но многие другие вещества также используются в различных условиях для синтеза частиц с определенными размерами, формой и свойствами поверхности. Существует множество различных методов мокрого синтеза, включая использование восстановительных сахаров, восстановление цитрата, восстановление через боргидрид натрия, реакция серебряного зеркала, полиольный процесс, рост, опосредованный семенами, и рост, опосредованный светом. Каждый из этих методов или комбинация методов, связаны с различными степенями контроля над распределением по размерам, а также с распределением геометрических размещений наночастицы. Эльсупике и др. обнаружили новый, очень перспективный метод мокрого химического синтеза. (2015). Они разработали зеленый ультразвуковой синтез. При ультразвуковой обработке, серебряные наночастицы (AgNP) синтезируются с κ-каррагинаном в качестве естественного стабилизатора. Реакцию проводят при температуре окружающей среды и получают наночастицы серебра с кристаллической структурой кубических гранецентрированных кристаллитов без примесей. Концентрация κ-каррагинана используется для влияния на распределение частиц по размерам AgNPs .

Восстановление моносахаридов

Существует много способов синтезировать наночастицы серебра; один из них – через моносахариды, включая глюкозу, фруктозу, мальтозу, мальтодекстрин и т. д., но не сахарозу. Это также простой метод для восстановления ионов серебра обратно в наночастицы серебра, поскольку он обычно включает одностадийный процесс . Имеются методы, которые показывают, что эти восстановительные сахара являются существенными для образования наночастиц серебра. Многие исследования показали, что этот метод зеленого синтеза, в частности, с использованием экстракта Cacumen platycladi, позволил восстановить серебро. Кроме того, размер наночастицы можно регулировать в зависимости от концентрации экстракта. Исследования показывают, что более высокие концентрации коррелируют с увеличением числа наночастиц. Из-за концентрации моносахаридов, образуются меньшие наночастицы при высоких уровнях рН. Другой метод синтеза наночастиц серебра включает использование восстанавливающих сахаров с щелочным крахмалом и нитратом серебра. Редуцирующие сахара имеют свободные альдегидные и кетоновые группы, которые позволяют им окисляться в глюконат. Моносахарид должен иметь свободную кетоновую группу, потому что для того, чтобы действовать в качестве восстановителя, он сначала подвергается таутомеризации. Кроме того, если альдегиды связаны, они будут застревать в циклической форме и не смогут действовать в качестве восстановителя. Например, глюкоза имеет альдегидную функциональную группу, которая способна восстанавливать катионы серебра до атомов серебра и затем окисляться до глюконовой кислоты . Реакция окисления сахаров происходит в водных растворах. Каппинг-агент также отсутствует при нагревании.

Восстановление цитрата

Старым и очень распространенным методом синтеза наночастиц серебра является восстановление цитрата. Этот метод был впервые зарегистрирован М. С. Ли, который успешно произвел коллоид серебра, стабилизированный цитратом, в 1889 году. Восстановление цитрата включает в себя востановление частиц серебра, обычно AgNO3 или AgClO4, до коллоидного серебра, с использованием тринатрийцитрата, Na3C6H5O7. Синтез обычно проводят при повышенной температуре (~ 100 ° С), чтобы максимизировать монодисперсность (однородность по размеру и форме) частицы. В этом методе, ион цитрата традиционно действует как восстановитель, так и липидный буферный лиганд , что делает его полезным процессом для производства AgNP из-за его относительной легкости и короткого времени реакции. Однако, образовавшиеся частицы серебра могут иметь широкое распределение по размерам и одновременно формировать несколько различных геометрических форм. Добавление более сильных восстановителей к реакции часто используется для синтеза частиц более однородных размеров и формы.

Восстановление через боргидрид натрия

Синтез наночастиц серебра восстановлением боргидридом натрия (NaBH4) происходит по следующей реакции:

    Ag + + BH4- + 3H2O → AgO + B (OH) 3 + 3,5H2

Восстановленные атомы металла образуют ядра наночастиц. В целом, этот процесс аналогичен описанному выше методу восстановления с использованием цитрата. Преимуществом использования боргидрида натрия является увеличение монодисперсности конечной популяции частиц. Причина увеличения монодисперсности при использовании NaBH4 заключается в том, что он является более сильным восстановителем, чем цитрат. Воздействие силы восстановительного агента можно увидеть, проверив диаграмму Ламера, которая описывает зарождение и рост наночастиц. Когда нитрат серебра (AgNO3) восстанавливается слабым восстановителем, таким как цитрат, скорость восстановления ниже, что означает, что новые ядра формируются, а старые ядра одновременно растут. Это является причиной того, что реакция цитрата характеризуется низкой монодисперсностью. Так как NaBH4 является значительно более сильным восстановителем, концентрация нитрата серебра быстро снижается, что сокращает время, в течение которого новые ядра формируются и растут одновременно с получением монодисперсной популяции наночастиц серебра. Частицы, образовавшиеся при восстановлении, должны иметь стабилизированные поверхности, чтобы предотвратить нежелательную агломерацию частиц (когда множественные частицы соединяются вместе), рост или огрубение. Движущей силой этих явлений является минимизация поверхностной энергии (наночастицы имеют большое отношение поверхности к объему). Этой тенденции к уменьшению поверхностной энергии в системе можно противостоять путем добавления видов, которые будут адсорбироваться на поверхности наночастиц и снижать активность поверхности частиц, предотвращая, таким образом, агломерацию частиц в соответствии с теорией DLVO и предотвращая рост, занимая места крепления для атомов металла. Химические вещества, которые адсорбируются на поверхности наночастиц, называются лигандами. Некоторые из этих стабилизирующих поверхность видов: NaBH4 в больших количествах, поливинилпирролидон (PVP), додецилсульфат натрия (SDS), и / или додекантиол. После образования частиц в растворе, они должны быть отделены и собраны. Существует несколько общих методов удаления наночастиц из раствора, включая испарение фазы растворителя или добавление химических веществ к раствору, что снижает растворимость наночастиц в растворе. Оба метода вызывают осаждение наночастиц.

Полиольный процесс

Полиольный процесс является особенно полезным методом, поскольку он обеспечивает высокую степень контроля как по размеру, так и по геометрии полученных наночастиц. Обычно синтез полиола начинается с нагревания полиольного соединения, такого как этиленгликоль, 1,5-пентандиол или 1,2-пропиленгликоль7. Добавляют Ag + и капсюлирующий агент (хотя сам полиол также часто является укупорочным средством). Затем разновидность Ag + восстанавливается полиолом до коллоидных наночастиц . Процесс полиола является высокочувствительным к условиям реакции, таким как температура, химическая среда и концентрация субстратов. Поэтому, изменяя эти переменные, можно выбирать различные размеры и геометрию для создания таких квази-сфер, пирамид, сфер и проводов. Дальнейшее исследование более подробно изучало механизм этого процесса, а также результирующие геометрии в различных условиях реакции.

Семенной опосредованный рост

Опосредованный семенами рост является синтетическим методом, при котором небольшие, стабильные ядра выращиваются в отдельной химической среде до желаемого размера и формы. Опосредованные семенами методы состоят из двух различных стадий: зародышеобразования и роста. Изменение определенных факторов в синтезе (например, лиганд, время зародышеобразования, восстановитель и т. д.) может контролировать конечный размер и форму наночастиц, делая опосредованный семенами рост популярным синтетическим подходом к управлению морфологией наночастиц. Стадия нуклеации опосредованного семенами роста состоит из восстановления ионов металлов в предшественнике к атомам металлов. Чтобы контролировать распределение по размеру семян, период зародышеобразования должен быть сокращен для монодисперсности. Модель LaMer иллюстрирует эту концепцию. Семена обычно состоят из небольших наночастиц, стабилизированных лигандом. Лиганды являются небольшими, обычно органическими молекулами, которые связываются с поверхностью частиц, предотвращая рост семян. Лиганды необходимы, так как они увеличивают энергетический барьер коагуляции, предотвращая агломерацию. Баланс между силами притяжения и отталкивания в коллоидных растворах может быть смоделирован с помощью теории DLVO. Для контроля формы и роста можно использовать аффинность связывания лиганда и селективность. Для синтеза семян следует выбирать лиганд со средней и низкой аффинностью связывания, чтобы обеспечить обмен в фазе роста. Рост наносерий включает в себя помещение семян в раствор для выращивания. Раствор для роста требует низкой концентрации предшественника металла, лигандов, которые будут легко обмениваться с существующими ранее лигандами семян, и слабой или очень низкой концентрацией восстановителя. Восстановитель не должен быть достаточно прочным для восстановления предшественника металла в растворе для выращивания в отсутствие семян. В противном случае, раствор для роста будет формировать новые центры зародышеобразования вместо роста на существующих (семенах). Рост является результатом конкуренции между поверхностной энергией (которая растет неблагоприятно с ростом) и объемной энергией (которая благоприятно падает с увеличением роста). Равновесие между энергетикой роста и растворения является причиной равномерного роста только на ранее существовавших семенах (без нового зарождения). Рост происходит за счет добавления атомов металлов из раствора для выращивания к семенам и лигандного обмена между лигандами роста (которые имеют более высокую аффинность связывания) и затравочными лигандами . Диапазон и направление роста можно регулировать наноразложением, концентрацией предшественника металла, лигандом и условиями реакции (тепло, давление и т. д.). Контроль стехиометрических условий роста раствора контролирует конечный размер частиц. Например, низкая концентрация металлических семян в предшественнике металла в растворе для выращивания будет приводить к образованию более крупных частиц. Было показано, что укупорочный агент контролирует направление роста и, тем самым, форму. Лиганды могут иметь различную аффинность для связывания через частицу. Дифференциальное связывание внутри частицы может привести к несходному росту частиц. Это создает анизотропные частицы с несферическими формами, включая призмы, кубы и стержни.

Свет-опосредованный рост

Световые опосредованные синтезы также были изучены, когда свет может способствовать формированию различных морфологий наночастиц серебра.

Реакция серебряного зеркала

Реакция серебряного зеркала включает превращение нитрата серебра в Ag (NH 3) OH. Затем Ag (NH3) OH восстанавливают в коллоидное серебро с использованием альдегидосодержащей молекулы, такой как сахар. Реакция серебряного зеркала заключается в следующем:

Размер и форма образующихся наночастиц трудно контролировать. Тем не менее, этот метод часто используется для нанесения тонких покрытий частиц серебра на поверхности, и в настоящее время проводится дальнейшая работа по созданию наночастиц более равномерного размера.

Ионная имплантация

Ионная имплантация используется для создания наночастиц серебра, внедренных в стекло, полиуретан, силикон, полиэтилен и поли (метилметакрилат). Частицы внедряются в подложку посредством бомбардировки при высоких ускоряющих напряжениях. При фиксированной плотности тока ионного пучка до определенного значения, размер внедренных наночастиц серебра оказался монодисперсным в пределах населенности, после чего наблюдается только увеличение концентрации ионов. Было обнаружено, что дальнейшее увеличение дозы ионного пучка уменьшает размер наночастиц и плотность в подложке-мишени, в то время как ионный пучок, работающий при высоком ускоряющем напряжении с постепенно увеличивающейся плотностью тока, приводит к постепенному увеличению размера наночастиц. Существует несколько конкурирующих механизмов, которые могут привести к уменьшению размера наночастиц; разрушение НЧ при столкновении, распыление поверхности образца, слияние частиц при нагревании и диссоциация . Образование внедренных наночастиц является сложным, и все контролируемые параметры и коэффициенты еще не исследованы. Компьютерное моделирование по-прежнему является сложным, поскольку оно включает процессы диффузии и кластеризации, однако его можно разбить на несколько различных подпроцессов, таких как имплантация, диффузия и рост. После имплантации, ионы серебра достигают разной глубины внутри подложки, которая приближается к гауссовскому распределению со средним значением, центрированным на глубине X. Высокотемпературные условия на начальных стадиях имплантации увеличат диффузию примесей в подложке и, как следствие, ограничивают насыщение ионов, которое требуется для нуклеации наночастиц. И температура имплантата, и плотность тока ионного пучка имеют решающее значение для контроля, чтобы получить размер и распределение монодисперсных наночастиц. Низкую плотность тока можно использовать для противодействия тепловому перемешиванию от ионного пучка и накопления поверхностного заряда. После имплантации на поверхность, токи пучка могут повышаться по мере увеличения поверхностной проводимости. Скорость образования примесей быстро падает после образования наночастиц, которые действуют как подвижная ионная ловушка. Это говорит о том, что начало процесса имплантации имеет решающее значение для контроля расстояния и глубины получаемых наночастиц, а также для контроля температуры подложки и плотности ионного пучка. Присутствие и характер этих частиц можно проанализировать с использованием многочисленных методов спектроскопии и микроскопии . Наночастицы, синтезированные в субстрате, проявляют поверхностные плазмонные резонансы, о чем свидетельствуют характерные полосы поглощения; эти особенности подвергаются спектральным сдвигам в зависимости от размера наночастиц и неровностей поверхности, однако оптические свойства также сильно зависят от материала подложки композита.

Биологический синтез

Биологический синтез наночастиц предоставил средство для улучшенных технологий по сравнению с традиционными методами, которые требуют использования вредных восстановителей, таких как боргидрид натрия. Многие из этих методов могли бы улучшить их экологию, заменив эти относительно сильные восстановители. Проблемы химического производства наночастиц серебра обычно связаны с высокой стоимостью, а долговечность частиц коротка из-за агрегации. Жесткость стандартных химических методов вызвала использование биологических организмов для уменьшения ионов серебра в растворе в коллоидные наночастицы. Кроме того, точный контроль формы и размера жизненно важен в процессе синтеза наночастиц, поскольку терапевтические свойства НЧ тесно связаны с такими факторами. Следовательно, основной фокус исследований в биогенном синтезе заключается в разработке методов, которые последовательно воспроизводят НЧ с точными свойствами.

Грибы и бактерии

Бактериальный и грибковый синтез наночастиц практичен, потому что бактерии и грибы легко обрабатываются и могут легко модифицироваться генетически. Это обеспечивает средства для разработки биомолекул, которые могут синтезировать AgNP различной формы и размера с высоким выходом, который находится на переднем крае современных проблем синтеза наночастиц. Грибковые штаммы, такие как Verticillium, и бактериальные штаммы, такие как K. pneumoniae, могут быть использованы в синтезе наночастиц серебра. Когда гриб / бактерии добавляют в раствор, биомасса белка выделяется в раствор. Электронные донорские остатки, такие как триптофан и тирозин, уменьшают содержание ионов серебра в растворе, вносимом нитратом серебра. Было обнаружено, что эти методы эффективно создают стабильные монодисперсные наночастицы без использования вредных восстановителей. Обнаружен способ восстановления ионов серебра за счет введения гриба Fusarium oxysporum. Образующиеся при этом наночастицы имеют размер от 5 до 15 нм и состоят из гидрозоля серебра. Считается, что восстановление наночастиц серебра происходит из ферментативного процесса, и полученные наночастицы серебра чрезвычайно устойчивы благодаря взаимодействию с белками, которые выводятся из организма грибами. Бактерии, обнаруженные в серебряных рудниках, Pseudomonas stutzeri AG259, были способны создавать частицы серебра в форме треугольников и шестиугольников. Эти наночастицы имели большой диапазон размеров, а некоторые из них достигали размеров более крупных, чем обычные наномасштабы, в 200 нм. Серебряные наночастицы были обнаружены в органической матрице бактерий . Для получения наночастиц серебра используют молочнокислые бактерии. Было установлено, что бактерии Lactobacillus spp., Pediococcus pentosaceus, Enteroccus faeciumI и Lactococcus garvieae способны восстанавливать ионы серебра в наночастицы серебра. Производство наночастиц происходит в клетке при взаимодействии между ионами серебра и органическими соединениями клетки. Было обнаружено, что бактерия Lactobacillus fermentum создает мельчайшие наночастицы серебра со средним размером 11,2 нм. Было также обнаружено, что эта бактерия продуцировала наночастицы с наименьшим распределением по размеру, а наночастицы были обнаружены, главным образом, снаружи клеток. Было также обнаружено, что увеличение рН увеличивает скорость, с которой производятся наночастицы, а также количество образующихся частиц .

Растения

Восстановление ионов серебра в наночастицах серебра также было достигнуто с использованием листьев герани. Было обнаружено, что добавление экстракта листьев герани в растворы нитрата серебра приводит к быстрому восстановлению ионов серебра и повышению стабильности получаемых наночастиц. Полученные в растворе наночастицы серебра имели диапазон размеров от 16 до 40 нм. В другом исследовании для восстановления ионов серебра использовали различные экстракты листьев растений. Было обнаружено, что экстракт листьев магнолии был лучшим при создании наночастиц серебра, в сравнении с Camellia sinensis (зеленым чаем), сосной, хурмой, гинкго, магнолией и платаном. Этот метод создавал частицы с дисперсным размером от 15 до 500 нм, но было также обнаружено, что размер частиц можно регулировать, варьируя температуру реакции. Скорость, с которой ионы восстанавливались экстрактом листьев магнолии, была сопоставима со скоростью, которая наблюдалась при использовании химикатов для восстановления. Использование растений, микроорганизмов и грибов в производстве наночастиц серебра ведет к более экологически безопасному производству наночастиц серебра. Доступен «зеленый метод» для синтеза наночастиц серебра с использованием экстракта листьев листьев Amaranthus gangeticus Linn.

Продукты и функционализация

Синтетические протоколы для производства наночастиц серебра могут быть модифицированы для получения наночастиц серебра с несферическими геометрическими формами, а также для функционализации наночастиц с различными материалами, такими как диоксид кремния. Создание наночастиц серебра различной формы и поверхностных покрытий позволяет лучше контролировать их размер-специфические свойства.

Анизотропные структуры

Серебряные наночастицы могут быть синтезированы в разнообразных несферических (анизотропных) формах. Поскольку серебро, как и другие благородные металлы, проявляет зависящий от размера и формы оптический эффект, известный как локализованный поверхностный плазмонный резонанс (LSPR) в наномасштабе, способность синтезировать наночастицы Ag различной формы значительно увеличивает способность настраивать их оптическое поведение. Например, длина волны, при которой локализованный поверхностный плазмонный резонанс происходит для наночастицы одной морфологии (например, сферы), будет различной, если эта сфера будет изменена на другую форму. Эта зависимость формы позволяет наночастице серебра испытывать оптическое усиление в диапазоне различных длин волн, даже сохраняя размер относительно постоянным, просто изменяя его форму. Использования этого расширенного по форме расширения оптического поведения варьируются от разработки более чувствительных биодатчиков до увеличения долговечности текстильных изделий.

Треугольные нанопризмы

Наночастицы треугольной формы являются «каноническим» типом анизотропной морфологии, изученной как в отношении золота, так и в отношении серебра. Несмотря на то, что существует много различных методов синтеза нанопризм серебра, в нескольких методах используется семенной метод, который включает в себя сначала синтез наночастиц серебра малого диаметра (3-5 нм), которые предлагают шаблон для направленного по форме роста в треугольные наноструктуры. Семена серебра синтезируют смешиванием нитрата серебра и цитрата натрия в водном растворе, а затем быстро добавляют в раствор боргидрид натрия. Нитрат серебра добавляется к затравочному раствору при низкой температуре, и призмы выращиваются путем медленного восстановления избытка нитрата серебра с использованием аскорбиновой кислоты. При опосредованном семенами подходе к синтезу серебрянной нанопризмы, селективность формы может частично контролироваться связывающим лигандом. Используя, по существу, ту же самую методику, которая указана выше, но изменяя цитрат на поливинилпирролидон (ПВП), вместо треугольных нанопризм создаются кубические и стержневые наноструктуры. Помимо метода, опосредованного семенами, серебряные нанопризмы также могут быть синтезированы с использованием фото-подхода, при котором ранее существовавшие сферические наночастицы серебра трансформируются в треугольные нанопризмы, просто путем воздействия реакционной смеси на свет высокой интенсивности.

Нанокубы

Серебряные нанокубы могут быть синтезированы с использованием этиленгликоля в качестве восстановителя и ПВП в качестве защитного вещества в реакции синтеза полиола. Типичный синтез с использованием этих реагентов включает добавление свежего нитрата серебра и ПВП к раствору этиленгликоля, нагретого до 140 °С . Эта процедура может быть фактически модифицирована для получения другой анизотропной наноструктуры серебра, нанопроволоки, путем простого старения раствора нитрата серебра, прежде чем использовать его в синтезе. Если позволить раствору нитрата серебр\ а стареть, первоначальная наноструктура, образовавшаяся во время синтеза, несколько отличается от первоначальной наноструктуры, полученной при использовании свежего нитрата серебра, что влияет на процесс роста и, следовательно, на морфологию конечного продукта.

Покрытие кремнеземом

При этом методе, поливинилпирролидон (ПВП) растворяют в воде с помощью ультразвука и смешивают с коллоидными частицами серебра. Активное перемешивание гарантирует, что ПВП адсорбируется на поверхности наночастиц. Центрифугирование разделяет покрытые ПВП наночастицы, которые затем переносятся в раствор этанола для последующего центрифугирования и помещаются в раствор аммиака, этанола и Si (OEt4) (TES). Перемешивание в течение 12 часов приводит к формированию оболочки из диоксида кремния, состоящей из окружающего слоя оксида кремния с эфирной связью, доступной для добавления функциональности. Варьирование количества TES позволяет создавать оболочки различной толщины. Этот метод популярен благодаря возможности добавлять различные функциональные возможности к открытой поверхности кремнезема.

Использование

Катализ

Использование наночастиц серебра для катализа стало привлекать внимание в последние годы. Несмотря на то, что наиболее распространенные применения связаны с лекарственными или антибактериальными целями, было показано, что наночастицы серебра проявляют каталитические окислительно-восстановительные свойства относительно красителей, бензола, монооксида углерода и, вероятно, других соединений. Размер наночастицы значительно определяет свойства, которые она проявляет, благодаря различным квантовым эффектам. Кроме того, химическая среда наночастицы играет большую роль в каталитических связях. Имея это в виду, важно отметить, что гетерогенный катализ происходит путем адсорбции веществ-реагентов на каталитическом субстрате. Когда полимеры, комплексные лиганды или поверхностно-активные вещества используются для предотвращения коалесценции наночастиц, каталитическая способность часто затрудняется из-за снижения адсорбционной способности . Однако, эти соединения можно также использовать таким образом, чтобы химическая среда усиливала каталитическую способность.

Поддержание на сферах кремнезема – уменьшение красителей

Серебряные наночастицы были синтезированы на подложке из инертных сфер двуокиси кремния. Подложка не играет практически никакой роли в каталитической способности и служит в качестве способа предотвращения слипания наночастиц серебра в коллоидном растворе. Таким образом, наночастицы серебра были стабилизированы, и было возможно продемонстрировать их способность служить в качестве электронного реле для восстановления красителей боргидридом натрия. Без катализатора наночастиц серебра, практически не происходит никакой реакции между боргидридом натрия и различными красителями: метиленовым синим, эозином и бенгалрозом.

Мезопористый аэрогель – селективное окисление бензола

Наночастицы серебра, нанесенные на аэрогель, являются предпочтительными из-за большего количества активных участков. Наивысшая селективность для окисления бензола до фенола наблюдалась при малом весовом проценте серебра в матрице аэрогеля (1% Ag). Полагают, что эта лучшая селективность является результатом более высокой монодисперсности в матрице аэрогеля образца Ag 1%. Было показано, что наночастицы сплава Au-Ag оказывают синергетическое воздействие на окисление монооксида углерода. Сама по себе, каждая наночастица из чистого металла демонстрирует очень низкую каталитическую активность для окисления СО; вместе, каталитические свойства значительно усиливаются. Предполагается, что золото действует как сильный связующий агент для атома кислорода, а серебро служит в качестве сильного окислительного катализатора, хотя точный механизм до сих пор полностью не понят. При синтезе в соотношении Au / Ag от 3: 1 до 10: 1, сплавленные наночастицы показали полную конверсию, когда 1% СО подавали на воздухе при температуре окружающей среды. Интересно, что размер сплавленных частиц не играет большой роли в каталитической способности. Хорошо известно, что наночастицы золота показывают каталитические свойства для CO, только когда они имеют размер ~ 3 нм, но сплавленные частицы до 30 нм демонстрируют отличную каталитическую активность – лучше, чем у наночастиц золота на активной подложке, такой как TiO2, Fe2O3 и т. д.

Световые эффекты

Плазмонические эффекты изучены довольно широко. До недавнего времени не было исследований, изучающих окислительное каталитическое усиление наноструктуры путем возбуждения ее поверхностного плазмонного резонанса. Определяющей особенностью для усиления окислительной каталитической способности была определена способность превращать пучок света в форму энергичных электронов, которые могут быть переданы адсорбированным молекулам. Следствием такого признака является то, что фотохимические реакции могут управляться непрерывным светом малой интенсивности, могут сочетаться с тепловой энергией. Сочетание непрерывного света низкой интенсивности и тепловой энергии было выполнено с помощью серебряных нанокубов. Важной особенностью серебряных наноструктур является то, что они позволяют осуществлять фотокатализ из-за своей природы для создания резонансных поверхностных плазмонов из света в видимом диапазоне. Добавление светового усиления позволило частицам работать в той же степени, что и частицы, которые были нагреты до 40 К и больше. Это важный вывод, если учесть, что снижение температуры на 25 К может увеличить срок службы катализатора почти в 10 раз при сравнении фототермического и термического процессов.

Биологическое исследование

Исследователи изучили использование серебряных наночастиц в качестве носителей для доставки различных грузов, таких как небольшие молекулы лекарств или большие биомолекулы, к конкретным мишеням. Как только у AgNP будет достаточно времени для достижения своей цели, выпуск полезного груза может быть потенциально вызван внутренним или внешним стимулом. Направление и накопление наночастиц может обеспечить высокую концентрацию полезных грузов в определенных целевых местах и может минимизировать побочные эффекты .

Химиотерапия

Введение нанотехнологий в медицину, как ожидается, будет способствовать диагностическому обнаружению рака и стандартам для разработки лекарственных препаратов. Нанотехнологии могут раскрывать представление о структуре, функциях и организационном уровне биосистемы в наномасштабе . Наночастицы серебра могут подвергаться методам покрытия, которые обеспечивают однородную функционализированную поверхность, к которой могут быть добавлены субстраты. Когда наночастица покрыта, например, кремнеземом, поверхность существует в виде кремниевой кислоты. Таким образом, субстраты можно добавлять через стабильный эфир и сложноэфирные связи, которые не разрушаются непосредственно естественными метаболическими ферментами. Недавние химиотерапевтические применения разработали противораковые лекарственные средства с фоторастворимым линкером, таким как орто-нитробензиловый мостик, прикрепляющий его к субстрату на поверхности наночастиц. Комплекс наночастиц с низкой токсичностью может оставаться жизнеспособным при метаболическом воздействии в течение времени, необходимого для распределения по всем системам органов. Если раковую опухоль целенаправленно лечить, в область опухоли может быть введен ультрафиолетовый свет. Электромагнитная энергия света заставляет фоточувствительный линкер прорываться между лекарственным средством и субстратом наночастиц. Теперь препарат расщепляется и высвобождается в неизмененной активной форме для воздействия на раковые опухолевые клетки. Предполагаемые преимущества этого метода заключаются в том, что препарат транспортируется без высокотоксичных соединений, лекарственное средство высвобождается без вредного излучения или полагается на специфическую химическую реакцию, которая может произойти, и лекарство может быть селективно высвобождено в ткани-мишени. Второй подход заключается в прикреплении химиотерапевтического лекарственного средства непосредственно к функционализированной поверхности наночастицы серебра в сочетании с нуклеофильным видом для осуществления реакции смещения. Например, как только лекарственный комплекс наночастиц попадает или находится вблизи ткани-мишени или клеток-мишеней, моноэфир глютатиона может вводиться на участок. Кислород нуклеофильного эфира будет прикрепляться к функционализированной поверхности наночастицы посредством новой сложноэфирной связи, в то время как лекарство высвобождается в окружающую среду. Препарат теперь активен и может осуществлять свою биологическую функцию на клетках, непосредственно примыкающих к его окружению, что ограничивает нежелательные взаимодействия с другими тканями.

Множественная лекарственная резистентность

Основной причиной неэффективности современных методов химиотерапии является множественная лекарственная резистентность, которая может возникать в результате нескольких механизмов . Наночастицы могут служить средством для преодоления МЛР. В общем, при использовании нацеливающего агента для доставки нанопереносчиков к раковым клеткам, необходимо, чтобы агент связывался с высокой избирательностью по отношению к молекулам, которые однозначно экспрессируются на поверхности клетки. Таким образом, НЧ могут быть сконструированы с протеинами, которые специфически обнаруживают лекарственно- резистентные клетки с избыточно экспрессируемыми транспортерными белками на их поверхности. Трудность, с которыми связаны распространенные системы доставки нанолекарств, состоит в том, что свободные лекарства, которые высвобождаются из нанопереносчиков в цитозоль, снова подвергаются воздействию транспортеров МЛР и экспортируются. Чтобы решить эту проблему, 8 нм частицы нанокристаллического серебра были модифицированы добавлением трансактивирующего транскрипционного активатора (ТАТ), полученного из вируса ВИЧ-1, который действует как пептид, проникающий в клетку (СРР). Как правило, эффективность AgNP ограничена из-за отсутствия эффективного клеточного поглощения; однако, CPP-модификация стала одним из наиболее эффективных методов улучшения внутриклеточной доставки наночастиц. После приема внутрь, экспорт AgNP предотвращается на основе исключения по размеру. Концепция проста: наночастицы слишком велики для того, чтобы их выкачивали транспортеры MDR, потому что функция эффлюкса строго подчинена размеру его субстратов, который обычно ограничивается диапазоном 300-2000 Да. Таким образом, наночастицы остаются невосприимчивыми к эффлюксу, обеспечивая средство для накопления в высоких концентрациях.

Антимикробная активность

Введение серебра в бактериальные клетки вызывает высокую степень структурных и морфологических изменений, которые могут привести к гибели клеток. По мере того, как наночастицы серебра контактируют с бактериями, они прилипают к клеточной стенке и клеточной мембране. Связанная часть серебра проходит внутрь и взаимодействует с фосфатсодержащими соединениями, такими как ДНК и РНК, в то время как другая часть прилипает к серосодержащим белкам на мембране. Взаимодействия серебра и серы на мембране вызывают структурные изменения клеточной стенки, такие как образование ямок и пор. Через эти поры, клеточные компоненты высвобождаются во внеклеточную жидкость, просто из-за осмотической разницы. Внутри клетки, интеграция серебра создает область с низкой молекулярной массой, где затем конденсируется ДНК. Наличие ДНК в конденсированном состоянии тормозит репликацию клеток белками в контакте с ДНК. Таким образом, введение наночастиц серебра препятствует репликации и является достаточным, чтобы вызвать гибель клетки. В дальнейшем, эффект увеличивается, когда серебро контактирует с жидкостями, приводя к ионизации, увеличивая бактерицидную активность наночастиц. Это было связано с подавлением ферментов и ингибированием экспрессии белков, которые связаны со способностью клетки продуцировать АТФ. Было замечено, что, в общем случае, наночастицы серебра со средним размером 10 нм или менее показывают электронные эффекты, которые значительно повышают их бактерицидную активность, хотя этот эффект варьирует для каждого типа предлагаемой клетки, так как состав их клеточных мембран сильно различается. Это также может быть отчасти связано с тем, что, по мере уменьшения размера частиц, реакционная способность увеличивается за счет увеличения площади поверхности и объема. Было отмечено, что введение наночастиц серебра проявляет синергическую активность с распространенными сегодня антибиотиками, такими как: пенициллин G, ампициллин, эритромицин, клиндамицин и ванкомицин против E.coli и S. aureus. В медицинских условиях было показано, что наночастицы серебра резко снижают количество бактерий в используемых устройствах. Однако, проблема возникает, когда процедура завершена, и нужно проводить новую. В процессе мытья инструментов, большая часть наночастиц серебра становится менее эффективной из-за потери ионов серебра. Наночастицы серебра более широко используются в костных трансплантатах для жертв ожогов, поскольку наночастицы серебра, внедренные с имплантатом, обеспечивают лучшую противомикробную активность и приводят к значительному уменьшению рубцевания. Они также показывают перспективное применение в качестве метода очистки воды . Наночастицы серебра могут препятствовать росту бактерий или прилипанию к поверхности. Это может быть особенно полезно в хирургических установках, когда все поверхности, контактирующие с пациентом, должны быть стерильными. Интересно отметить, что наночастицы серебра могут быть использованы на многих типах поверхностей, включая металлы, пластик и стекло. Эти новые применения являются прямыми «потомками» более старых практик, в которых нитрат серебра использовали для лечения таких состояний, как язвы кожи. Теперь наночастицы серебра используются в бинтах и пластырях, чтобы помочь излечить определенные ожоги и раны. Они также показывают перспективное применение в качестве метода очистки воды. Вода может содержать многочисленных возбудителей болезней, и в некоторых частях мира чистая вода, да и вода вообще, считается роскошью. Метод использования серебра для удаления микробов не нов, но в этом эксперименте использовался карбонат в воде, чтобы сделать микробы еще более уязвимыми для серебра. Сначала ученые этого эксперимента используют наночастицы для удаления определенных пестицидов из воды, которые оказываются смертельными для людей, если они попадают в организм. Несколько других тестов показали, что наночастицы серебра способны удалять определенные ионы в воде, такие как железо, свинец и мышьяк. Но это не единственная причина, почему наночастицы серебра настолько привлекательны, что они не требуют какой-либо внешней силы (нет электричества в гидролизе) для реакции.

Товары народного потребления

Бытовые применения

Имеются примеры использования наночастиц серебра и коллоидного серебра в потребительских товарах. Samsung и LG – две крупные технологические компании, планирующие использовать антибактериальные свойства наночастиц серебра во множестве приборов, таких как кондиционеры, стиральные машины и холодильники. Например, обе компании утверждают, что использование наночастиц серебра в стиральных машинах поможет стерилизовать одежду и воду во время мытья и полоскания, а также позволит очистить одежду без необходимости горячей воды. Наночастицы в этих приборах синтезируются с помощью электролиза. Через электролиз, серебро извлекается из металлических пластин, а затем превращается в наночастицы серебра при помощи восстановителя. Этот метод позволяет избежать процессов сушки, очистки и повторной дисперсии, которые обычно требуются при альтернативных способах коллоидного синтеза.

Безопасность

Хотя наночастицы серебра широко используются в составе различных коммерческих продуктов, в последнее время предпринимаются серьезные усилия для изучения их воздействия на здоровье человека. Было проведено несколько исследований, описывающих токсичность наночастиц серебра in vitro для различных органов, включая легкие, печень, кожу, мозг и репродуктивные органы . Механизм токсичности наночастиц серебра в клетках человека, по-видимому, обусловлен окислительным стрессом и воспалением, которые вызываются образованием активных форм кислорода (АФК), стимулированных либо NP-Ag, либо ионами Ag, либо обоими факторами. Например, Park et al. показали, что воздействие линии клеток перитонеальных макрофагов мыши (RAW267.7) на наночастицы серебра снижает жизнеспособность клеток в зависимости от концентрации и времени. Они также показали, что внутриклеточный редуцированный глутатионин (GSH), который является поглотителем АФК, уменьшился до 81,4% контрольной группы наночастиц серебра при 1,6 частей на миллион.

Режимы токсичности

Поскольку наночастицы серебра подвергаются растворению, высвобождая ионы серебра, которые, как известно, обладают токсическими эффектами, было проведено несколько исследований, чтобы определить, является ли токсичность наночастиц серебра результатом выделения ионов серебра, или она связана с самой наночастицей. Несколько исследований показывают, что токсичность наночастиц серебра объясняется высвобождением ионов серебра в клетках, так как сообщалось о том, что как наночастицы серебра, так и ионы серебра обладают сходной цитотоксичностью. Например, в некоторых случаях сообщается, что наночастицы серебра облегчают высвобождение токсичных свободных ионов серебра в клетках с помощью «механизма типа троянского коня», когда частица попадает в клетки и затем ионизируется внутри клетки. Тем не менее, поступают сообщения о том, что комбинация наночастиц серебра и ионов ответственна за токсический эффект наночастиц серебра. Navarro et al., используя цистеиновые лиганды в качестве инструмента для измерения концентрации свободного серебра в растворе, установили, что, хотя первоначально ионы серебра в 18 раз более вероятно ингибировали фотосинтез водорослей Chlamydomanas reinhardtii, после 2 часов инкубации было обнаружено, что водоросли, содержащие наночастицы серебра, были более токсичными, чем только ионы серебра. Кроме того, имеются исследования, которые показывают, что наночастицы серебра индуцируют токсичность, независимую от свободных ионов серебра. Например, Asharani et al. сравнивали фенотипические дефекты, наблюдаемые у рыбок данио, обработанных наночастицами серебра и ионами серебра, и установили, что фенотипические дефекты, наблюдаемые при обработке наночастицами серебра, не наблюдались у зародышей, обработанных ионным серебром, что указывает на то, что токсичность наночастиц серебра не зависит от ионов серебра. Белковые каналы и поры ядерной мембраны часто могут иметь размер от 9 нм до 10 нм в диаметре. Маленькие серебряные наночастицы такого размера обладают способностью не только проходить через мембрану, взаимодействовать с внутренними структурами, но и застревать в мембране. Отложения наночастиц серебра в мембране могут влиять на регуляцию растворения, обмен белков и распознавание клеток. Воздействие наночастиц серебра связано с «воспалительными, окислительными, генотоксическими и цитотоксическими последствиями»; частицы серебра накапливаются, главным образом, в печени. Но также было показано, что они токсичны в других органах, включая мозг. Нано-серебро, применяемое к клеткам, культивируемым тканевыми клетками, приводит к образованию свободных радикалов, что вызывает опасения в отношении потенциальных рисков для здоровья.

:Tags

Список использованной литературы:

Graf, Christina; Vossen, Dirk L.J.; Imhof, Arnout; van Blaaderen, Alfons (July 11, 2003). «A General Method To Coat Colloidal Particles with Silica». Langmuir. 19 (17): 6693–6700. doi:10.1021/la0347859

Rama, Siva, Krishna Perala, and Sanjeev Kumar. «On the Mechanism of Metal Nanoparticle Synthesis in the Brust–Schiffrin Method.»

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. (2011). «Controlling The Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications». Chemical Reviews. 111 (6): 3669–3712. doi:10.1021/cr100275d

«Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan» (PDF). springer.com. Retrieved 2016-02-15.

Iravani S., Korbekandi H., Mirmohammadi S. V., Zolfaghari B. (2014). «Synthesis of silver nanoparticles: chemical, physical and biological methods». Research in Pharmaceutical Sciences. 9 (6): 385–406. PMC 4326978 Freely accessible. PMID 26339255

Darroudi M, Ahmad MB , Abdullah AH, Ibrahim NA. «Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles». Int J Nanomedicine. 6: 569–74. doi:10.2147/IJN.S16867. PMC 3107715 Freely accessible. PMID 21674013

Nowack, Bernd, Harald F. Krug, and Murray Height. «120 Years of Nanosilver History: Implications for Policy Makers.»

Wojtysiak, Sebastian, and Andrzej Kudelski. «Influence of Oxygen on the Process of Formation of Silver Nanoparticles during Citrate/borohydride Synthesis of Silver Sols.»

Song K. C., Lee S. M., Park T. S., Lee B. S. (2009). «Preparation of colloidal silver nanoparticles by chemical reduction method». Korean J. Chem. Eng. 26 (1): 153–155. doi:10.1007/s11814-009-0024-y

Smetana A. B., Klabunde K. J., Sorensen C. M. (2005). «Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation». J. Colloid Interface Sci. 284 (2): 521–526. doi:10.1016/j.jcis.2004.10.038

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама